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This	paper	models	the	value	of	conducting	financial	statement	analysis	(FSA)	in	the	

presence	of	an	electronically	traded	fund	(ETF)	that	gives	exposure	to	the	firm’s	

systematic	value.		FSA	is	characterized	as	a	costly	process	that	yields	a	private	signal	

about	the	idiosyncratic	portion	of	a	firm’s	future	payoffs.		The	value	of	this	signal	

depends	on	how	much	of	the	resulting	information	is	available	for	free	to	

uninformed	traders	by	observing	price,	which	is	turn	depends	on	the	noise	in	the	

economy.		A	popular	argument	is	that	ETFs	are	attracting	noise	traders	away	from	

the	underlying	firm,	which	makes	prices	more	informative	and	private	information	

less	valuable.		While	this	may	be	true,	I	find	that	introducing	an	ETF	into	the	market	

also	provides	a	discrete	increase	in	the	value	of	FSA,	but	only	if	investors	use	the	

ETF	to	hedge	out	exposure	to	the	portion	of	firm	value	that	they	are	uninformed	

about.	The	net	result	is	that	in	equilibrium	there	is	an	increase	in	the	fraction	of	

investors	who	conduct	FSA.	This	result	is	unavailable	in	previous	theoretical	papers	

about	ETFs	because	they	modeled	investors	as	being	risk	neutral,	thus	eliminating	

their	desire	to	hedge	out	uncertainty.	
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INTRODUCTION	

	 In	2018	the	global	market	for	exchange	traded	funds	(ETFs)	topped	$5000	

billion,	up	from	$772	billion	10	years	earlier	(Blackrock	2018).		The	breadth	of	

funds	continues	to	grow	as	well,	with	almost	8000	different	products	offering	

exposure	to	everything	from	the	S&P	500	index	to	narrowly	defined	industries	to	bit	

coin.		It	is	estimated	that	equity	ETFs	account	for	over	a	third	of	all	trading	volume	

in	the	US.		The	advent	of	ETFs,	and	the	associated	shift	toward	passive	investing,	has	

had	a	significant	impact	on	financial	markets.		In	an	article	titled	“ETF	growth	is	in	

‘danger	of	devouring	capitalism’”	the	Financial	Times	reports	“This	shift	out	of	

traditional,	“active”	money	management	is	one	of	the	most	profound	changes	to	the	

global	financial	system	in	history	and	is	now	powerful	enough	to	rewire	how	

markets	function”	(Wigglesworth,	February	4,	2018).		Empirically,	it	has	been	

shown	that	increased	ETF	ownership	of	the	underlying	stock	can	result	in	decreased	

liquidity,	increased	price	synchronicity	between	stocks	in	the	ETF,	and	a	decrease	in	

the	degree	to	which	stock	prices	reflects	future	earnings	(Israeli,	Lee	and	Sridharan	

2017).		In	short,	the	fear	is	that	ETFs	may	be	making	the	stock	market	less	efficient.		

	 On	the	surface	this	concern	may	seem	misplaced,	as	we	generally	assume	

that	inefficiency	breeds	opportunity.		If	the	market	for	the	firm	is	becoming	less	

efficient	then	surely	a	savvy	investor	could	profit	on	this	by	collecting	private	

information	and	trading	in	the	inefficient	market.		On	the	other	hand,	if	liquidity	is	

falling	then	it	might	be	more	difficult	to	profit	from	being	privately	informed.		The	

purpose	of	this	paper	is	to	model	the	forces	at	work	when	an	ETF	is	introduced	into	

the	market,	with	a	particular	emphasis	on	how	this	event	changes	the	value	of	being	

privately	informed	about	the	firm.			

	 Since	the	1934	publication	of	“Security	Analysis”	by	Graham	and	Dodd,	

financial	statement	analysis	(FSA)	has	focused	on	understanding	and	predicting	

firm-specific	outcomes.		Thus,	any	change	in	the	value	of	being	privately	informed	

about	the	firm	has	immediate	implications	for	FSA.		In	response	to	the	rise	of	ETFs,	

Federico	Kaune	of	UBS	Asset	Management	was	quoted	in	the	Financial	Times	as	

saying	“We	can	no	longer	be	the	fundamental	investors	we	want	to	be.”	In	this	paper	

I	show	that	some	of	the	concerns	raised	about	the	impact	of	ETFs	on	the	value	of	
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information	are	valid.		However,	I	also	show	that	the	introduction	of	the	ETF	creates	

a	new	trading	instrument	that	changes	investors’	optimal	strategies,	with	the	net	

result	that	FSA	is	even	more	valuable.		

	 My	model	features	two	risky	assets	–	a	firm	whose	payoffs	have	common	and	

idiosyncratic	components	and	an	ETF	whose	payoffs	depend	only	on	the	common	

component.	This	abstraction	captures	the	idea	that	the	ETF	averages	out	the	

idiosyncratic	variation	due	to	its	constituent	firms,	giving	the	investor	a	pure	

exposure	to	the	common	component.	In	this	setting,	I	characterize	FSA	as	collecting	

information	about	the	idiosyncratic	component	of	the	firm	payoff,	and	I	study	how	

the	value	of	this	signal	changes	with	the	introduction	of	the	ETF.		The	value	of	being	

privately	informed	is	always	relative	to	remaining	uninformed	and	gleaning	

whatever	information	is	available	from	observing	prices.		My	model	finds	the	

rational	expectations	equilibrium	for	the	two	risk	assets	in	order	compare	the	value	

of	information	with	and	without	an	ETF	asset	in	the	market.			

	 I	begin	by	showing	that	if	one	considers	a	market	with	only	the	firm	asset,	

then	indeed	the	value	of	information	falls	as	the	liquidity	of	the	firm	asset	falls,	as	

the	article	in	the	Financial	Times	would	suggest.	But	what	this	analysis	misses	is	that	

the	introduction	of	ETF	gives	investors	a	mechanism	for	hedging	out	the	common	

variation	in	the	firm’s	payoff.		Once	we	allow	investors	the	opportunity	to	hedge,	the	

value	of	information	is	actually	higher	after	the	ETF	is	introduced.	This	occurs	

because,	once	informed	investors	hedge	out	their	exposure	to	the	common	

component	of	the	firm’s	payoff,	their	private	signal	about	the	idiosyncratic	portion	

of	the	payoff	is	perfectly	aligned	with	the	variation	in	their	net	position.		In	short,	

they	can	bet	more	aggressively	on	the	signal	that	FSA	provides	them	because	

hedging	with	the	ETF	allows	them	to	remove	the	exposure	to	variation	that	they	are	

uninformed	about.		Further,	if	the	fraction	of	informed	investors	is	allowed	to	

change	in	response	to	the	changing	value	of	being	informed,	I	show	that	the	

equilibrium	fraction	of	informed	traders	actually	increases	after	the	introduction	of	

an	ETF.	
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RELATED	LITERATURE	

	 While	there	is	no	direct	empirical	work	studying	the	impact	of	ETFs	on	the	

value	of	information,	the	literature	on	how	they	impact	market	efficiency	is	closely	

related.1	The	evidence	is	mixed	on	whether	ETFs	help	or	hinder	the	efficient	pricing	

of	the	underlying	securities.		Holding	aside	for	a	moment	their	impact	on	liquidity,	

to	the	extent	ETFs	offer	a	low-cost	way	to	invest	in	a	common	factor,	they	may	

improve	the	efficient	pricing	of	this	factor.		Glosten,	Nallareddy,	and	Zou	(2016)	find	

that	stocks	incorporate	systematic	information	more	quickly	once	they	are	in	ETF	

portfolios.		Further,	they	argue	that	the	increased	comovement	of	stocks	after	their	

inclusion	in	an	ETF	is	due	to	the	better	pricing	of	systematic	information.		Consistent	

with	ETFs	bringing	more	common	factor	bets	to	the	market,	Bhojraj,	Mohanram	and	

Zhang	(2018)	find	that	information	transfers	about	constituent	firms’	earnings	are	

greater	for	firms	included	in	a	sector	ETF.		In	addition	Li	and	Zhu	(2016)	argue	that	

informed	traders	use	ETFs	to	circumvent	short-sale	constraints	on	the	underlying	

stock.		They	document	that	the	portion	of	a	stock’s	short	interest	that	is	due	to	

investors	shorting	an	ETF	predicts	future	stock	returns	and	conclude	that	ETFs	help	

improve	market	efficiency.	

	 The	aforementioned	predictions	may	be	reversed	once	we	take	into	account	

how	the	introduction	of	an	ETF	influences	liquidity	in	the	underlying	stock.	Hamm	

(2014)	finds	a	negative	association	between	ETF	ownership	and	liquidity	in	the	

underlying	stock.		Consistent	with	this,	Israeli,	Lee,	and	Sridharan	(2017)	show	that	

trading	costs	increase	and	liquidity	in	the	underlying	stock	falls	after	an	increase	in	

firm	ownership	by	an	ETF.	They	also	find	that	an	increase	in	ETF	ownership	causes	

the	underlying	stock	price	to	be	less	reflective	of	future	earnings,	and	they	offer	

some	limited	evidence	that	the	number	of	analysts	falls.		The	reduction	in	liquidity	

lowers	the	value	of	being	informed,	and	so	analysts	no	longer	cover	the	stock,	and	

																																																								
1	There	is	a	rich	literature	regarding	the	microstructure	of	ETFs;	how	they	are	created,	how	they	are	
priced,	and	why	they	offer	extremely	low	transaction	costs.	Lettau	and	Madhavan	(2018) detail	the	
inner	workings	of	ETFs	and	related	research	into	it.		My	model	relies	only	on	the	facts	that	an	ETF	is	a	
basket	of	securities	that	collectively	provide	exposure	to	some	commonly	held	attribute	of	the	
constituent	firms,	and	that	they	can	be	longed	or	shorted	at	very	low	cost.	
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the	efficient	pricing	of	its	future	earnings	is	diminished.2		However,	it	is	also	possible	

that	the	liquidity	of	ETFs	attracts	high-frequency	traders	and	that	this	new	source	of	

demand	migrates	to	the	underlying	securities	because	ETFs	and	their	constituent	

securities	are	tied	by	arbitrage	(Ben-David,	Franzoni,	and	Moussawi	2017).	

Therefore,	the	liquidity-driven	demand	for	the	ETF	can	actually	induce	greater	

liquidity	for	the	underlying	security.3		

	 To	summarize	the	empirical	literature,	ETFs	have	attracted	a	lot	of	attention	

in	the	capital	market	and,	depending	on	the	nature	of	the	attention,	it	could	help	or	

hinder	the	efficient	pricing	of	the	underlying	stock.		The	most	direct	effect	is	that	

ETFs	allow	exposure	to	a	common	factor	at	low	cost.	They	also	provide	a	

roundabout	way	to	short	a	difficult-to-short	underlying	stock.		How	the	ETF	affects	

liquidity	produces	more	indirect	effects.		If	liquidity	traders	migrate	away	from	the	

underlying	stock	to	the	ETF	then	this	would	lower	the	value	of	being	informed	about	

the	asset’s	idiosyncratic	payoff,	and	therefore	lower	information	production.		

Alternatively,	if	the	ETF	itself	demands	a	large	amount	of	liquidity,	this	will	create	

additional	liquidity	demand	in	the	underlying	stock,	which	would	increase	the	value	

of	private	information.		There	is	some	evidence	supporting	all	of	these	results.		The	

model	presented	here	allows	the	study	of	both	firm	and	ETF	liquidity	shocks.		The	

model	is	about	the	value	of	conducting	FSA,	which	is	directly	influenced	by	the	

degree	of	market	inefficiency	but,	as	I	show,	it	is	also	impacted	by	the	trading	

opportunities	available	to	the	informed	investors.	

	 Turning	to	the	theoretical	literature,	Gorton	and	Pennacchi	(1993)	use	a	

model	of	risk	neutral	traders	and	imperfect	competition	(i.e.	a	Kyle	1985	model)	to	

show	that	uninformed	liquidity	traders	are	better	off	trading	in	the	ETF	than	in	the	

underlying	security.		This	occurs	because	the	uninformed	traders	don’t	face	adverse	

																																																								
2	The	Israeli	et	al	(2017)	results	may	appear	at	odds	with	Glosten	et	al	(2016).		However,	Israeli	et	al	
(2017)	show	that	the	Glosten	et	al	results	apply	to	the	concurrent	pricing	of	information	about	the	
common	component	of	the	news,	while	their	results	apply	to	the	pricing	of	future	information,	and	is	
largely	driven	by	the	idiosyncratic	component	of	the	news.			
3	Another	branch	of	the	ETF	literature	considers	how	the	ETF	aids	trading	in	assets	that	are	
otherwise	illiquid.		Bhattacharya	and	O’Hara	(2017)	consider	the	case	where	there	is	no	market	for	
the	underlying	asset	and	so	informed	traders	must	use	the	ETF	as	an	indirect	means	of	trading	on	
their	information.		
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selection	in	the	ETF	market.	Cong	and	Xu	(2016)	show	that	this	result	holds	after	

the	ETF	weights	on	the	underlying	assets	are	optimized.		Subrahmanyam	(1991)	

generalizes	the	payoff	structure	to	one	with	a	common	component	and	an	

idiosyncratic	component	(as	in	my	model)	and	introduces	common-factor-informed	

investors	along	with	idiosyncratically-informed	investors.		He	shows	that,	even	in	

the	presence	of	factor-informed	traders,	liquidity	traders	are	still	generally	better	

off	meeting	their	needs	in	the	ETF	market.	He	also	gives	conditions	whereby	the	

equilibrium	number	of	idiosyncratically-informed	investors	falls	when	an	ETF	is	

introduced	to	the	market.		This	result	is	a	notable	contrast	to	the	results	presented	

here,	where	the	value	of	being	idiosyncratically-informed	increases	after	the	

introduction	of	the	ETF,	causing	the	number	of	informed	traders	to	increase.		The	

key	difference	in	the	models	is	that	Subrahmanyam	assumes	risk	neutral	investors,	

with	the	consequence	that	they	do	not	hedge.4	As	I	show	later,	risk	adverse	

investors	use	the	ETF	asset	to	hedge	out	exposure	to	the	common	component	of	the	

payoff,	and	this	increases	the	value	of	their	private	signal.			

	

THE	MODEL	

	 The	value	of	financial	statement	analysis	is	characterized	by	the	value	of	the	

incremental	expected	utility	afforded	a	privately	informed	agent	relative	to	an	

uninformed	agent.		Precisely,	it	is	the	value	Φ		that	equates	the	expected	utility	of	an	

agent	who	pays	Φ  and	observes	the	private	signal	Y	with	the	expected	utility	of	an	

agent	who	pays	nothing	and	only	gains	the	information	available	from	observing	the	

asset’s	price.	Φ  is	denominated	in	units	of	the	economy’s	riskless	asset,	which	serves	

as	the	numeraire.	This	value	is	computed	after	taking	the	agent’s	optimal	strategy	

into	account,	and	then	integrates	over	all	the	information	variables	in	the	model.		As	

such,	it	is	the	amount	the	agent	is	willing	to	pay	for	the	signal	before	the	signal	

realization	is	known.	As	shown	in	Alles	and	Lundholm	(1993)	and	Admati	Pfliederer	

(1987),	for	agents	with	negative	exponential	utility	and	risk	tolerance	parameter	ρ,	

observing	normal	random	variables,	Φ  is	given	as	
																																																								
4	To	see	this,	note	in	Subrahmanyam	(1991)	that	the	derived	demands	for	the	firm	asset	and	the	ETF	
asset	are	always	in	the	same	direction	(compare	equation	5	on	page	22	and	equation	8	on	page	24).	
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	 Φ =
𝜌
2 𝑙𝑜𝑔

𝑑𝑒𝑡𝑉!
𝑑𝑒𝑡𝑉!

,	 (1)	

	

where	VU	and	VI	are	the	posterior	variance-covariance	matrices	of	beliefs	about	all	

risky	asset	payoffs	held	by	the	uninformed	traders	and	informed	traders,	

respectively.		For	instance,	if	there	are	two	risky	assets	then	each	type	of	trader	has	

a	2x2	matrix	specifying	her	posterior	variance	for	each	asset	and	the	posterior	

covariance	between	them.		The	determinant	operator	converts	the	matrix	into	a	

scalar.		As	the	difference	in	the	informed	and	uninformed	variances	grows,	the	value	

of	information	increases.		The	expression	in	(1)	is	completely	general,	requiring	only	

negative	exponential	utility	and	normal	random	variables.		However,	to	use	this	

formula,	we	need	to	solve	for	the	VU	and	VI	matrices.		This	requires	determining	the	

amount	of	information	the	uninformed	traders	glean	from	observing	price,	which	in	

turn	requires	specification	of	the	equilibrium	rational	expectations	price.		For	this,	

we	need	the	details	of	the	asset	payoffs	and	information	signals.	

	

Market	with	One	Risky	Asset	

	 In	order	to	illustrate	the	impact	of	introducing	an	ETF	into	the	market,	we	

first	need	to	establish	the	value	of	information	in	a	market	with	only	the	firm	asset.		

Assume	there	is	a	competitive	market	for	one	risky	asset	with	payoff	F,	composed	of	

a	common	component	Fc	and	an	idiosyncratic	component	Fi	;	F	=	Fc	+	Fi.		The	

common	component	can	be	thought	of	as	an	industry	factor.		The	common	

component	Fc	is	distributed	normal	with	mean	η and	variance	g,	the	idiosyncratic	

component	is	distributed	normal	with	mean	0	and	variance	h,	and	the	two	

components	are	independent.			

	 There	is	a	private	signal	Yi	=	Fi	+	ε	held	by	the	λ	informed	traders,	where	ε  is	

normal	with	mean	0	and	variance	s.		All	informed	traders	see	exactly	the	same	Yi	

(the	subscript	i	denotes	‘idiosyncratic’).5	There	is	no	information	about	the	common	

																																																								
5	There	are	two	common	options	for	describing	the	signal	error’s	covariance	across	investors	–	either	
the	error	is	independent	across	all	agents	or	it	is	perfectly	correlated,	as	in	my	model.		Neither	
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component	beyond	the	common	knowledge	of	its	mean	and	variance.		In	this	

context,	financial	statement	analysis	is	characterized	as	a	process	that	results	in	

possessing	the	private	signal	Yi.	The	process	is	completely	focused	on	learning	about	

firm-specific	payoff-relevant	information.		While	FSA	certainly	entails	industry	

analysis,	in	virtually	all	textbooks	the	reason	given	for	studying	the	industry	is	to	

gain	a	better	understanding	of	the	firm’s	idiosyncratic	place	in	it.		Thus,	as	an	

abstraction,	the	private	information	produced	by	the	FSA	process	is	only	about	Fi.		

The	central	variable	of	interest	in	this	paper	is	Φ,	the	value	of	possessing	the	private	

signal	Yi.		We	are	interested	in	comparing	its	value	across	markets	with	and	without	

an	ETF	asset,	and	in	seeing	how	its	value	changes	as	noise	trading	moves	from	the	

firm	asset	to	the	ETF	asset.6	

	 The	market	for	the	risky	asset	is	composed	of	λ	informed	traders	and	(1-λ)	

uninformed	traders;	all	with	negative	exponential	risk	aversion	and	risk	tolerance	

parameter	ρ.  Note	that	to	study	the	value	of	information	it	is	desirable	to	begin	with	

a	model	that	responds	to	risk	aversion.		Absent	risk	aversion,	investors	have	no	

reason	to	engage	in	actions	that	hold	the	mean	payoff	constant	but	lower	the	

variance	of	payoffs.	In	particular,	investors	have	no	reason	to	hedge,	and	hedging	

will	be	turn	out	to	be	a	consequence	of	introducing	an	ETF.		For	this	reason,	I	begin	

with	the	standard	competitive	market	model	with	risk	aversion	rather	than	Kyle’s	

1985	model	of	risk	neutral	traders	in	a	non-competitive	market.	

 While	the	physical	supply	of	the	risky	asset	is	known	and	fixed,	I	model	

liquidity	shocks,	or	noise	trading,	as	random	variation	around	this	known	supply.		

One	of	the	main	observations	from	Israeli	et	al	(2017)	is	that	liquidity	trading	in	the	

underlying	security	diminishes	as	the	ETF	draws	away	this	activity.		The	precise	

source	of	the	randomness	about	liquidity	trading	is	not	important	to	my	model;	it	

could	be	due	to	“noise	traders”	as	defined	by	Black	(1986),	where	individuals	

																																																																																																																																																																					
assumption	is	ideal.		In	my	model,	every	analyst	who	conducts	FSA	reaches	exactly	the	same	
conclusion.		However,	the	alternative	of	independent	errors	is	also	unrealistic,	implying	that	the	
analysts	collectively	know	the	value	of	the	payoff	perfectly.		As	shown	later,	there	are	some	practical	
modeling	advantages	to	assuming	all	informed	agents	see	exactly	the	same	signal.	
6	There	is	little	tension	in	a	model	where	investors	have	a	signal	about	the	common	factor	and	then	
an	ETF	is	added	to	the	market.		The	ETF	allows	the	factor-informed	trader	the	perfect	mechanism	to	
use	her	information,	and	so	the	value	of	the	factor	information	increases.	
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behave	as	if	they	have	information	even	though	they	actually	do	not.		Or	it	could	be	

traditional	liquidity	trading	where	the	demand/supply	shock	is	driven	by	

preferences	outside	the	model	(for	example,	the	immediate	desire	to	buy	a	boat).	

The	random	liquidity/noise	shocks	make	it	impossible	for	the	uninformed	traders	to	

perfectly	infer	the	informed	traders’	underlying	private	information.		Instead,	price	

is	a	noisy	signal	about	their	private	information.	The	supply	of	the	risky	asset	is	

given	by	X1	with	variance	w1	and	is	independent	of	the	other	random	variables	in	

the	model.		Later	we	will	study	how	shifting	noise	from	the	underlying	security	to	an	

ETF	security	impacts	the	value	of	information.	

	 With	this,	we	can	compute	the	posterior	beliefs	of	the	informed	and	

uninformed	traders.7		The	λ	informed	traders,	upon	observing	the	private	signal	Yi	

have	the	following	posterior	belief	about	the	mean	EI	and	variance	VI	of	F	=	Fc	+	Fi.			

	

	 𝐸! = 𝜂 +
ℎ𝑌!
ℎ + 𝑠  𝑎𝑛𝑑 𝑉! = 𝑔 +

ℎ𝑠
ℎ + 𝑠.	

(2)	

	

The	posterior	mean	increases	with	the	signal,	and	at	an	increasing	rate	as	the	signal	

error	variance	s	decreases.		The	posterior	variance	increases	with	the	common	

variation	g.	It	also	increases	with	the	idiosyncratic	variation	h,	but	at	a	rate	that	

decreases	as	the	signal	error	variance	decreases.		

	 The	(1-λ)	uninformed	traders	use	price	to	infer	what	they	can	about	the	

informed	traders’	signal.		Assuming	that	price	is	linear	in	the	informed	traders’	

signal	and	the	realized	supply	of	the	asset,	P	=	a0	+	a1Yi	–	a2X1,	the	uninformed	trader	

can	compute	a	linear	transformation	of	P	to	deduce	the	information	signal	𝑃	as	

	

																																																								
7	The	general	expressions	for	the	conditional	mean	and	variance	of	normal	random	variables	are	as	
follows.		Let	F	be	an	n-dimensional	vector	of	payoffs	with	prior	mean	vector	µ	and	let	Y	be	an	m-
dimensional	vector	of	signals	about	those	payoffs,	with	no	particular	covariance	structure,	and	mean	
vector	υ.		The	covariance	matrix	of	𝐹 ∪ 𝑌	is	n+m	dimensional	and	symmetric.		Partition	this	matrix	
into	an	nxn	matrix	of	the	top	left	corner,	labeled	Σ11,	an	mxm	matrix	in	the	bottom	right	corner	
labeled	Σ22,	an	nxm	matrix	of	the	top	right	corner	labeled	Σ12	and	an	mxn	matrix	in	the	bottom	left	
corner,	labeled	Σ!"! .	The	nx1	posterior	mean	vector	is	then	given	by	𝐸 =  𝜇 + Σ!"Σ!!!!(𝑌 − 𝜐)	and	the	
nxn	posterior	covariance	matrix	is	given	by	𝑉 = Σ!! −  Σ!"Σ!!!!Σ!"! 	(Welch	2014).		
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	 𝑃 =
(𝑃 − 𝑎!)

𝑎!
 = 𝑌! −

𝑎!
𝑎!
𝑋! =  𝑌! − 𝑍 ∗ 𝑋!.	

(3)	

	

The	precise	value	of	Z	=	a2/a1	is	found	later	as	an	equilibrium.		With	this,	the	

uninformed	traders,	upon	observing	price,	have	the	following	posterior	belief	about	

the	mean	EU	and	variance	VU	of	F	=	Fc	+	Fi.			

	

	
𝐸! = 𝜂 +

ℎ𝑃
ℎ + 𝑄!!

 𝑎𝑛𝑑 𝑉! = 𝑔 +
ℎ𝑄!!
ℎ + 𝑄!!

 ,𝑤ℎ𝑒𝑟𝑒 𝑄!! = 𝑠 + 𝑍!𝑤!.	
(4)	

	

The	subscript	‘1a’	on	Q1a	stands	for	the	one-asset	economy,	to	distinguish	between	

this	model	and	the	two-asset	economy	that	comes	later.	We	will	refer	to	Q1a	as	the	

‘noise	in	price.’		Combining	these	beliefs	with	the	negative	exponential	utility	

function	gives	the	informed	traders	and	uninformed	traders	demands,	respectively,	

as	

	

	 𝐷! = 𝜌𝑉!!! 𝐸! − 𝑃 	and	𝐷! = 𝜌𝑉!!! 𝐸! − 𝑃 .	

	

(5)	

Market	clearing	equates	these	demands	with	the	supply:	

	

	 𝜆𝐷! + 1− 𝜆 𝐷! = 𝑋!.	

	

(6)	

The	equilibrium	price	is	found	by	plugging	the	informed	and	uninformed	

expectations	into	(5),	and	then	equating	the	ratio	of	coefficients	on	Yi	and	X1	with	Z	=	

a2/a1.		The	result	is	a	cubic	equation	in	Z	that	has	a	unique	solution,	as	given	in	the	

first	lemma,	and	derived	in	the	appendix.	

	

Lemma	1:		Define	G	=	gh	+	gs	+	hs.		The	equilibrium	Z	and	the	resulting	noise	in	the	

price	signal	Q1a	are	given	as		
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𝑍 =

𝐺
𝜆𝜌ℎ  𝑎𝑛𝑑 𝑄!! = 𝑠 +

𝐺
𝜆𝜌ℎ

!

𝑤!.	

	

(7)	

The	noise	in	price	is	increasing	in	all	the	variance	parameters	g,	h,	and	s,	and	in	the	

exogenous	liquidity	noise	w1.		This	is	a	modest	generalization	of	the	rational	

expectations	equilibrium	when	there	is	no	common	component	to	the	payoff	(i.e.	

when	F	=	Fi),	as	given	in	Grossman	and	Stiglitz	(1980).		To	see	this,	set	g	=	0	and	note	

that	Z	=	s/ λ ρ,	as	in	their	model.8	

	

	 By	applying	(1),	the	value	of	information	in	this	case	is	

	

	
Φ 1 asset =

𝜌
2 𝑙𝑜𝑔

𝑔 + ℎ𝑄!!
ℎ + 𝑄!!

𝑔 + ℎ𝑠
ℎ + 𝑠

,𝑤ℎ𝑒𝑟𝑒 𝑄!! = 𝑠 + 𝑍!𝑤! 𝑎𝑛𝑑 𝑍 =
𝐺
𝜆𝜌ℎ.	

	

	

(8)	

This	leads	to	our	first	result	regarding	the	value	of	information.	

	

Lemma	2:	The	value	of	information	Φ	in	the	one-asset	economy	is	increasing	in	the	

liquidity	noise	w1	and	decreasing	in	the	fraction	of	informed	traders	λ.	

	

To	see	the	first	part,	note	that	the	equilibrium	Z	given	in	(7)	does	not	depend	on	the	

liquidity	noise	w1.		Therefore	the	value	of	information	in	(8)	is	increasing	in	the	

price	noise	Q1a,	which	is	increasing	in	w1.		The	second	part	follows	because	Q1a	is	

decreasing	in	λ.		

	 Thus,	if	ETFs	pull	liquidity	trading	away	from	the	firm,	w1	falls,	and	so	does	

the	resulting	value	of	information.		Less	noise	trading	means	that	the	uninformed	

traders	gain	more	information	from	observing	price,	which	lowers	the	difference	

between	the	informed	and	uninformed	posterior	variances,	and	therefore	lowers	

																																																								
8	Admati	(1985)	provides	a	solution	to	the	multi-asset	noisy	rational	expectations	equilibrium	with	a	
reasonably	general	information	structure,	but	her	model	does	not	accommodate	the	case	where	
information	is	only	about	one	component	of	the	asset’s	final	payoff.		
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the	value	of	being	informed.	Later,	when	we	also	require	equilibrium	in	the	market	

for	information,	we	show	that	in	the	one-asset	economy	the	equilibrium	response	is	

that	the	number	of	informed	traders	falls.	These	predictions	are	in	line	with	the	

results	in	Israeli	et	al	(2017).			

	 The	one-asset	model	has	a	payoff	structure	with	common	and	idiosyncratic	

components,	but	no	means	for	investors	to	trade	on	the	common	component.		In	the	

next	section	we	add	the	ETF	asset	to	the	market	and	show	that	many	of	the	one-

asset	results	no	longer	hold.			

	

Market	with	Two	Risky	Assets	

	 Suppose	that	the	firm	asset,	and	information	about	it,	remain	the	same;	F1	=	

Fc	+	Fi	and	Yi	=	Fi	+	ε	as	before.		Now	add	an	ETF	asset	whose	payoff	is	F2	=	Fc.		The	

idea	is	that	the	ETF	is	composed	of	a	sufficiently	large	number	of	component	assets	

that,	to	a	rough	approximation,	the	idiosyncratic	components	of	each	firm	in	the	ETF	

average	out	and	contribute	trivial	residual	variance	to	the	payoff.		It	is	easiest	to	

think	of	the	ETF	as	an	industry	ETF,	although	any	ETF	that	isolates	a	common	

component	of	underlying	firm	payoffs	will	fit	the	model.	We	are	interesting	in	

studying	how	the	value	of	information	in	this	two-asset	economy	compares	to	the	

value	of	information	in	the	one-asset	economy.			

	 Investors	now	need	to	form	beliefs	about	two	assets.	The	λ informed	traders,	

upon	observing	the	private	signal	Yi,	have	the	following	posterior	2x1	mean	vector	

and	2x2	covariance	matrix	for	[F1,	F2]:	

	 	

𝐸! =
𝜂 +

ℎ𝑌!
ℎ + 𝑠 
𝜂

 𝑎𝑛𝑑 𝑉! =  
𝑔 +

ℎ𝑠
ℎ + 𝑠 𝑔
  
𝑔 𝑔

,𝑤𝑖𝑡ℎ det𝑉! =
𝑔ℎ𝑠
ℎ + 𝑠.	

	

	

(9)	

	

As	before,	the	(1-λ)	uninformed	traders	use	prices	to	infer	what	they	can	about	the	

informed	traders’	signal.		Because	there	is	no	information	to	be	had	about	Fc,	we	

begin	with	the	conjecture	that	the	price	of	the	second	asset	(i.e.	the	ETF)	is	

uninformative.		However,	the	price	of	the	first	asset	(i.e.	the	firm)	should	still	



	 12	

provide	some	information	about	Yi.		We	conjecture	that	the	price	of	the	first	asset	is	

linear	in	the	informed	traders’	signal	and	the	realized	supply	of	both	assets:	

	 	

𝑃! = 𝑎! + 𝑎!𝑌! − 𝑎!𝑋! − 𝑎!𝑋! 𝑎𝑛𝑑	

	

(10)	

	

	 	

𝑃! = 𝑌! −
𝑎!
𝑎!

𝑋! −  
𝑎!
𝑎!

𝑋! = 𝑌! − 𝑍!𝑋! − 𝑍!𝑋!.	

	

(11)	

	

While	it	might	be	tempting	to	assume	Z2	is	zero,	we	show	later	that	the	equilibrium	

price	for	the	firm	asset	also	puts	weight	on	the	supply	of	the	ETF	asset.		This	makes	

sense	because	both	risky	assets	offer	exposure	to	the	common	component	of	the	

payoff,	and	so	the	noisy	variation	in	both	assets	should	be	priced.	For	the	two-asset	

economy,	denote	the	variance	of	the	noise	in	the	price	signal	as	

	 	

𝑄!! = 𝑉𝑎𝑟 𝜀 − 𝑍!𝑋! − 𝑍!𝑋! =  𝑠 + 𝑍!!𝑤! + 𝑍!!𝑤!,	

	

(12)	

	

where	the	subscript	‘2a’	denotes	the	two-asset	economy.		Assuming	for	the	moment	

that	Z1	and	Z2	are	known	values	(to	be	determined	in	equilibrium),	the	uninformed	

traders’	posterior	2x1	mean	vector	and	2x2	covariance	matrix	are:	

	

	
𝐸! =

𝜂 +
ℎ𝑃!

ℎ + 𝑄!! 
𝜂

 𝑎𝑛𝑑 𝑉! =  
𝑔 +

ℎ𝑄!!
ℎ + 𝑄!!

𝑔
  
𝑔 𝑔

,𝑤𝑖𝑡ℎ 𝑑𝑒𝑡𝑉! =
𝑔ℎ𝑄!!
ℎ + 𝑄!!

.	

	

	

(13)	

To	generalize	the	demand	functions	in	(5),	let	EI	and	EU	be	the	2x1	vectors	as	given	

above,	VI	and	VU	be	the	2x2	covariance	matrices	given	above,	and	P	be	a	2x1	vector	

of	P1	and	P2.	Plugging	in	these	values	into	(5)	gives	the	2x1	demand	functions	for	the	

informed	and	uninformed	traders:	
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𝐷! = 𝜌

𝑌!
𝑠
+ 𝑃! − 𝑃!

ℎ + 𝑠
ℎ𝑠  

𝜂 − 𝑃!
𝑔 −

𝑌!
𝑠 + 𝑃! − 𝑃!

ℎ + 𝑠
ℎ𝑠

	

	

	

(14)	

and	

	

	

𝐷! = 𝜌

𝑃!
𝑄!!

+ 𝑃! − 𝑃!
ℎ + 𝑄!!
ℎ𝑄!! 

𝜂 − 𝑃!
𝑔

−
𝑃!
𝑄!!

+ 𝑃! − 𝑃!
ℎ + 𝑄!!
ℎ𝑄!!

.	

	

	

(15)	

These	demand	functions	reveal	an	important	change	that	happens	to	the	economy	

when	the	EFT	asset	is	introduced.	Both	informed	and	uninformed	traders	hedge	

their	demands.		To	see	this,	note	that	the	demand	for	the	ETF	asset	(the	bottom	

entry	in	each	demand	vector)	perfectly	removes	the	demand	for	the	firm	asset	(the	

top	entry	in	each	demand	vector).		To	make	this	completely	clear,	note	that	absent	

the	firm	asset,	the	demand	for	the	ETF	asset	from	informed	and	uninformed	traders	

would	be	computed	from	(5)	as	

	

𝜌
𝜂 − 𝑃!
𝑔 .	

	

	

(16)	

Thus,	the	actual	demand	for	the	ETF	asset	is	the	amount	in	(16)	less	the	demand	for	

the	firm	asset	given	in	the	top	entry	of	(14)	and	(15).		So,	if	the	trader	purchases	50	

units	of	the	firm	asset,	he	subtracts	exactly	50	units	from	his	demand	for	the	ETF	

asset.		The	net	result	is	a	perfect	hedge	against	the	common	component	Fc	in	the	

firm’s	payoff.		

	 This	result	is	not	a	simple	artefact	of	having	two	risky	assets	in	the	economy.		

If	the	firm	payoff	was	changed	to	be	only	the	idiosyncratic	component	Fi	(rather	

than	Fc	+	Fi)	and	the	signal	was	Yi	=	Fi	+	ε,	then	the	demand	for	each	asset	would	

depend	on	only	the	parameters	related	to	that	asset.		For	example,	computing	the	
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conditional	means	and	variances	for	the	informed	traders	in	this	alternative	model,	

then	applying	(5),	would	result	in		

	

𝐷!𝑤𝑖𝑡ℎ 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑝𝑎𝑦𝑜𝑓𝑓𝑠 = 𝜌

𝑌!
𝑠
−

ℎ + 𝑠
ℎ𝑠

𝑃!
 

𝜂 − 𝑃!
𝑔

.	

	

	

(17)	

Note	that,	with	independent	payoffs,	the	demand	for	each	asset	depends	only	on	

that	asset’s	parameters.	As	we	will	see	later,	by	allowing	traders	the	opportunity	to	

hedge	out	exposure	to	the	common	component	of	the	firm	payoff,	the	existence	of	

the	ETF	asset	increases	the	value	of	the	signal	about	the	idiosyncratic	component	of	

the	payoffs.	However,	the	result	is	not	immediate	because,	by	changing	the	demand	

for	the	firm	asset,	the	ETF	also	changes	the	informativeness	of	that	asset’s	price.		

Thus,	we	need	to	develop	the	equilibrium	prices	in	the	two-asset	market.			

	 Returning	to	our	model,	the	market	clearing	conditions	for	each	asset	require	

that		

	 𝜆𝐷! + 1− 𝜆 𝐷! =
𝑋!
𝑋!

.	

	

(18)	

Solving	for	P1	and	P2	gives	

	 	

𝑃! =  𝜂 −
𝑔
𝜌 𝑋! + 𝑋! +  

𝜆𝑌!
𝑠 + 1− 𝜆 𝑃!

𝑄!!
− 𝑋!𝜌

𝜆 ℎ + 𝑠
ℎ𝑠 + 1− 𝜆 ℎ + 𝑄!!

ℎ𝑄!!

 𝑎𝑛𝑑	

	

	

	

(19)	

	

	 	

𝑃! =  𝜂 −
𝑔
𝜌 𝑋! + 𝑋! .	

	

(20)	

	

As	expected,	the	price	P2	of	the	ETF	is	straightforward.		It	is	the	commonly-held	

expectation	of	the	payoff	η	less	the	risk	premium,	where	the	risk	premium	is	

affected	equally	by	the	shocks	X1	and	X2.		This	makes	sense	because	both	assets	
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come	with	exposure	to	the	common	factor	Fc	and	so	the	supply	of	each	contributes	

to	the	risk.	P1,	the	price	of	the	firm,	is	complicated	by	the	rational	expectations	

conjecture.		Note	that	the	RHS	of	(19)	is	linear	in	Yi,	X1,	and	X2	(recalling	that	

𝑃! = 𝑌! − 𝑍!𝑋! − 𝑍!𝑋!).		As	shown	in	the	appendix,	equating	the	coefficients	on	Yi,	

X1,	and	X2	on	the	RHS	of	(19)	with	the	assumed	linear	coefficients	a1,	a2	and	a3	in	

(10)	gives	the	equilibrium	condition	for	Z1	and	Z2	(recalling	that	Q2a	is	also	a	

function	of	these	values).			

	

Lemma	3	(with	proof	in	Appendix)	

Define	G	=	gh	+	gs	+	hs	and	G’	=	λgh	+	gs	+	hs.		In	the	two-asset	economy	there	exist	

unique	equilibrium	values	of	Z1	and	Z2	such	that	

	

	
𝑍! = 𝑍! −

𝑠
𝜆𝜌  𝑎𝑛𝑑 𝑍! ∈

𝐺′
𝜆𝜌ℎ ,

𝐺
𝜆𝜌ℎ .	

	

(21)	

Note	that	both	Z1	and	Z2	are	strictly	positive	(as	claimed	earlier).		An	analytic	

solution	for	Z1	and	Z2	is	not	available	and	simulations	show	that	the	solution	

depends	on	virtually	every	parameter	in	the	model.		Nonetheless,	the	range	given	in	

(21)	is	sufficiently	precise	to	allow	inferences	about	the	equilibrium.		

	 With	the	existence	and	an	approximate	range	of	Z1	and	Z2	established,	we	are	

in	a	position	to	compute	the	value	of	the	Yi	signal	in	the	two-asset	economy.	

	 In	the	two–asset	economy,		

	

	 𝑑𝑒𝑡𝑉! =
𝑔ℎ𝑠
ℎ + 𝑠  𝑎𝑛𝑑 𝑑𝑒𝑡𝑉! =

𝑔ℎ𝑄!!
ℎ + 𝑄!!

	

	

(22)	

so	that		

	 	

Φ 2 asset =
𝜌
2 𝑙𝑜𝑔

𝑔ℎ𝑄!!
ℎ + 𝑄!!
𝑔ℎ𝑠
ℎ + 𝑠

,𝑤ℎ𝑒𝑟𝑒 𝑄!! = 𝑠 + 𝑍!!𝑤! + 𝑍!!𝑤!.	

	

	

(23)	
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The	form	of	the	value	of	information	function	in	the	two-asset	economy	has	an	

important	difference	from	its	form	in	the	one-asset	economy.		In	(23)	we	see	that	

the	g	in	the	numerator	and	denominator	cancel	and	so,	effectively,	the	variance	of	

the	common	factor	only	enters	the	computation	through	the	noise	in	price	Q2a.		In	

contrast,	for	the	one-asset	economy,	g	enters	additively	in	both	the	numerator	and	

denominator,	as	seen	in	(8),	and	then	again	in	the	price	noise	Q1a.		The	additive	

component	shifts	the	numerator	and	denominator	equal	amounts,	making	any	

difference	between	them	smaller	in	the	argument	of	the	log	function.		In	the	one-

asset	economy	this	makes	sense	–	the	information	is	only	about	the	idiosyncratic	

portion	of	the	payoffs	and	so	if	the	common	component	becomes	more	variable	then	

the	signal	is	relatively	less	valuable.	Why	doesn't	this	same	phenomenon	occur	in	

the	two-asset	economy?		As	we	saw	earlier,	in	the	two-asset	economy	investors	

hedge	out	their	exposure	to	the	common	component	and	so	the	only	way	a	change	

in	the	common	factor	variance	can	matter	is	if	it	influences	the	noise	in	price.	

	 As	in	the	one-asset	economy,	liquidity	noise	still	impacts	the	value	of	

information	although	the	proof,	given	in	the	appendix,	is	considerably	more	

complicated.	

	

Lemma	4	

The	equilibrium	noise	in	price	Q2a	and	the	value	of	information	Φ2a	in	the	two-asset	

economy	are	increasing	in	the	firm’s	liquidity	shock	parameter	w1	and	in	ETF’s	

liquidity	shock	parameter	w2.		Further,	both	are	more	sensitive	to	w1	than	to	w2.	

	

Not	surprisingly,	more	price	noise	from	either	source	makes	being	privately	

informed	more	valuable.		The	additional	observation	that	the	value	of	information	is	

more	sensitive	to	firm	noise	than	to	ETF	noise	means	that	if	a	unit	of	liquidity	

trading	shifts	from	the	firm	asset	to	the	ETF	asset,	the	net	effect	will	be	to	lower	the	

price	noise	and,	consequently,	the	value	of	information.		Thus,	the	phenomenon	

noted	in	the	one-asset	economy,	that	the	value	of	being	privately	informed	falls	if	
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the	price	noise	falls,	carries	over	to	the	two-asset	economy.9		However,	what	this	

comparative	static	misses	is	that	there	is	a	structural	shift	in	the	value	of	

information	when	traders	are	allowed	to	use	the	ETF	asset	as	a	hedge.		This	leads	to	

the	main	result	of	the	paper.	

	

Theorem	One.		For	fixed	values	of	noise	variance	w1	and	w2,	the	value	of	information	

is	strictly	greater	in	the	two-asset	economy	than	in	the	one-asset	economy.		That	is,	

Φ 2 asset > Φ 1 asset .	

	

To	begin,	write	the	difference	in	the	two	expressions	as		

	

Φ 2 asset −Φ 1 asset =
𝜌
2 𝑙𝑜𝑔

𝑔ℎ𝑄!!
ℎ + 𝑄!!
𝑔ℎ𝑠
ℎ + 𝑠

−
𝜌
2 𝑙𝑜𝑔

𝑔 + ℎ𝑄!!
ℎ + 𝑄!!

𝑔 + ℎ𝑠
ℎ + 𝑠

 𝑤ℎ𝑒𝑟𝑒	

	 	

	

	

(24)	

𝑄!! = 𝑠 + 𝑍!𝑤! 𝑎𝑛𝑑 𝑄!! = 𝑠 + 𝑍!!𝑤! + 𝑍!!𝑤!.	

	

This	value	is	positive	if	and	only	if	

	

	 𝑔ℎ𝑄!!
ℎ + 𝑄!!

+
ℎ𝑄!!
ℎ + 𝑄!!

ℎ𝑠
ℎ + 𝑠 >

𝑔ℎ𝑠
ℎ + 𝑠 +

ℎ𝑄!!
ℎ + 𝑄!!

ℎ𝑠
ℎ + 𝑠 .	

	

(25)	

Recall	from	the	one-asset	economy	that	𝑄!! = 𝑠 + 𝑍!𝑤!and	𝑍 = 𝐺/(𝜆𝜌ℎ)	and	so	Q1a	

is	a	known	function	of	parameters.		In	contrast,	Q2a	is	an	unknown	function	that	

depends	on	the	equilibrium	values	of	Z1	and	Z2.		Solving	(25)	for	Q2a	and	substituting	

in	for	Q1a	gives	the	condition	necessary	for	the	theorem	to	be	true:	

																																																								
9	As	an	alternative	prediction,	recall	that	Ben-David	et	al	(2017)	conjecture	that	
high-frequency	trading	increases	the	variance	of	liquidity	shocks	to	the	ETF,	w2.	
Lemma	4	shows	that	this	would	increase	the	value	of	information	in	the	two-asset	
economy.	
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𝑄!! > 𝑠

𝐺 + 𝑔 + ℎ 𝑍!𝑤!
𝐺 + 𝑔𝑍!𝑤!

.	

	

(26)	

Without	an	analytic	solution	for	Z1	and	Q2a,	the	proof	of	Theorem	One,	given	in	the	

Appendix,	has	to	rely	on	an	indirect	method.		The	basic	idea	is	to	consider	both	sides	

of	(26)	as	a	function	of	w1	and	then	show	that	the	LHS	dominates	the	RHS	at	all	

levels	of	w1.		The	result	is	illustrated	in	Figure	1.	As	the	figure	shows,	when	there	is	

no	price	noise,	the	uninformed	traders	know	everything	the	informed	traders	know,	

so	the	value	of	information	in	both	economies	is	zero.		However,	as	the	price	noise	

increases,	the	value	of	information	in	the	two-asset	economy	increases	faster.		

Eventually	there	is	so	much	noise	that	the	uninformed	traders	learn	nothing	from	

price;	at	this	point	the	value	of	information	in	the	two-asset	economy	asymptotes	at	

a	strictly	higher	level	than	the	value	of	information	in	the	one-asset	economy.		

	 Theorem	One	captures	a	feature	of	ETFs	that	has	not	been	studied	

previously.	The	prior	literature	has	focused	on	how	the	addition	of	an	EFT	draws	

liquidity	away	from	the	underlying	security,	and	benefits	an	investor	who	is	

informed	about	the	common	factor.		Both	effects	work	against	an	investor	who	is	

informed	about	the	idiosyncratic	component	of	the	asset’s	payoff	–	the	very	thing	

that	financial	statement	analysis	is	best	at.	While	these	marginal	forces	are	still	at	

work	in	my	model,	Theorem	One	shows	that	there	is	a	discrete	increase	in	the	value	

of	information	when	the	ETF	asset	is	added	to	the	market.		By	allowing	investors	to	

hedge	out	their	exposure	to	the	common	variation,	the	value	of	their	idiosyncratic	

information	is	greater.	This	result	is	not	available	in	the	prior	literature	because	

those	models	assumed	risk	neutral	investors,	and	risk	neutral	investors	do	not	

hedge.		

	

Equilibrium	in	the	Market	for	Information	

	 The	results	derived	so	far	are	for	a	fixed	fraction	λ	of	informed	agents.		Given	

sufficient	friction	in	the	labour	market	for	financial	analysts’	skills,	this	is	not	an	

unreasonable	assumption	over	horizons	of	a	few	years.		However,	if	the	value	of	
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information	changes	because	of	the	introduction	of	ETFs,	then	it	is	reasonable	to	

assume	that,	eventually,	the	fraction	of	agents	who	collect	private	information	will	

also	change.			

	 Assume	that	an	informed	trader	pays	a	fixed	cost	C	to	acquire	the	signal	Yi	=	

Fi	+	ε ,	and	Var(ε)	=	s,	as	before.		Insofar	as	the	change	in	noise/liquidity	trading	

brought	on	by	the	EFT	has	no	impact	on	the	cost	of	becoming	privately	informed,	a	

fixed	cost	structure	is	appropriate.			

	

Definition:	The	competitive	equilibrium	in	the	market	for	private	information	is	

defined	by	the	fraction	λ∗	that	makes Φ 𝜆∗ = 𝐶.		

	

As	discussed	in	the	introduction,	Israeli	et	al	(2017)	offer	some	mixed	evidence	that	

the	number	of	analysts	following	a	firm	falls	when	there	is	an	increase	in	ETF	

ownership	of	a	firm’s	shares.		Treating	λ∗ as	a	function	of	w1	and	totally	

differentiating	Φ 𝜆∗ = 𝐶,	the	prediction	can	be	written	as	

	

	 𝜕Φ
𝜕𝑤!

=
𝜕Φ
𝜕𝜆

𝜕λ∗

𝜕𝑤!
+
𝜕Φ
𝜕𝑤!

|𝑓𝑖𝑥𝑒𝑑 𝜆 =
𝜕C
𝜕𝑤!

= 0.	

	

(27)	

In	the	one-asset	economy,	Lemma	2	shows	that		!!
!"
< 0 𝑎𝑛𝑑 !!

!!!
|𝑓𝑖𝑥𝑒𝑑 𝜆 > 0 and	

so,	by	(27),	it	must	be	that	!!
∗

!!!
> 0.	

	

In	other	words,	if	the	noise	in	the	firm’s	asset	decreases	(because	liquidity	trading	is	

moving	to	the	ETF	asset),	the	equilibrium	fraction	of	informed	traders	in	the	one-

asset	economy	also	decreases,	with	the	consequence	that	the	value	of	information	

remains	constant.	This	is	a	standard	result	that	can	be	found	in	Grossman	and	

Stiglitz	(1980).	

	 This	force	remains	in	the	two-asset	economy,	but	there	is	a	competing	force	

created	by	the	ETF	asset.		We	can	characterize	the	equilibrium	in	both	markets	as:	
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	 Φ 2 asset, λ!"∗ =  Φ 1 asset, λ!"∗ = C,where	

	

(28)	

λ!"∗ 	denotes	the	equilibrium	fraction	of	informed	traders	in	the	two-asset	market	

and	λ!"∗ 	denotes	the	equilibrium	fraction	of	informed	traders	in	the	one-asset	

market.		Our	second	theorem	compares	the	two	fractions	of	informed	traders.	

	

Theorem	Two.		In	equilibrium,	the	fraction	of	informed	traders	in	the	two-asset	

economy	is	greater	than	the	fraction	of	informed	traders	in	the	one-asset	economy.		

That	is,	𝜆!!∗ > 𝜆!!∗ .	

	

The	theorem	follows	because	Φ 1 asset 	is	decreasing	in	λ,	as	given	in	lemma	2,	and	

Φ 2 asset > Φ 1 asset 	at	all	levels	of	λ,	as	shown	in	Theorem	One.		Thus,	while	the	

exact	shape	of	Φ 2 asset 	is	unknown,	it	must	lie	above	and	to	the	right	of	the	

Φ 1 asset 	function.	Thus,	at	the	equilibrium	where	both	Φ 1 asset 	and	Φ 2 asset 	

equal	C,	the	fraction	of	informed	traders	in	the	two-asset	economy	is	greater	than	in	

the	fraction	of	informed	traders	in	the	one-asset	economy.		That	is,	𝜆!!∗ > 𝜆!!∗ .		This	

result	is	illustrated	in	Figure	2.		The	figure	shows	that,	regardless	of	the	new	

equilibrium	of	informed	traders	that	would	occur	in	the	single	asset	economy	as	a	

response	to	the	decline	in	liquidity	trading,	once	the	EFT	asset	is	taken	into	account,	

more	traders	choose	to	become	informed.		

	

SUMMARY	AND	EMPIRICAL	IMPLICATIONS	

	 The	most	practical	implication	of	the	model	is	that,	to	reap	the	highest	value	

of	information,	the	financial	analyst	needs	to	pair	a	recommendation	based	on	his	

idiosyncratic	information	about	the	firm	with	a	recommendation	to	hedge	out	the	

common	component	of	value	using	the	appropriate	ETF.		For	example,	through	the	

use	of	financial	statement	analysis	the	analyst	could	conclude	that	Eldorado	Gold	

Corporation	is	unusually	efficient	at	mining	gold.	The	analyst	should	then	combine	

her	recommendation	that	investors	go	long	in	Eldorado	with	a	recommendation	
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that	they	short	the	iShares	Global	Gold	Index	in	order	to	remove	exposure	to	mining	

industry	factors	that	she	is	uninformed	about	(for	example,	the	future	price	of	gold).	

	 The	model	also	highlights	the	difference	between	studying	the	introduction	

of	an	ETF	into	the	market	and	studying	changes	in	the	level	of	ETF	ownership.	Thus,	

the	model	is	consistent	with	the	marginal	effects	found	in	Israeli	et	al	(2017);	

assuming	that	an	increase	in	ownership	of	an	existing	ETF	causes	a	reduction	in	

liquidity/noise	trading	in	the	underlying	firms,	then	the	value	of	information	will	

drop	and	the	fraction	of	informed	traders	will	fall.	At	the	same	time,	the	prediction	

of	Theorems	One	and	Two	are	that,	in	a	pre/post	research	design,	the	introduction	

of	an	ETF	should	increase	the	value	of	information	and	the	fraction	of	informed	

traders.		

	 The	model	also	highlights	the	importance	of	identifying	the	full	impact	of	the	

ETF	on	liquidity	trading.	Theorem	One	says	that	the	value	of	information	increases	

discretely,	holding	the	noise	parameters	constant.		But	once	we	allow	the	noise	

parameters	to	change	as	well,	the	predictions	are	more	complicated.		Once	the	ETF	

asset	exists,	Lemma	4	describes	the	marginal	effects	of	changing	the	noise	

parameters.		If	liquidity/noise	shifts	from	the	firm	asset	to	the	ETF	asset,	but	the	

total	remains	constant,	then	the	net	marginal	effect	is	to	lower	the	value	of	

information.		Alternatively,	if	the	introduction	of	an	ETF	draws	in	a	new	source	of	

liquidity/noise	trading	in	the	ETF,	the	lemma	says	that	the	value	of	information	will	

increase.	

	 Finally,	Theorem	Two	highlights	the	importance	of	the	researcher’s	

assumption	about	the	equilibrium	conditions	of	all	markets.		If,	in	addition	to	

equilibrium	in	the	asset	markets,	the	researcher	believes	that	the	market	for	

analysts	is	also	in	equilibrium,	then	the	empirical	focus	should	be	on	finding	the	

counter-balancing	empirical	forces	that	maintain	the	equilibrium.	For	instance,	as	

the	fraction	of	informed	traders	increases	following	the	introduction	of	an	ETF,	

there	should	be	a	compensating	increase	in	the	noise	in	the	price	signal,	such	that	

the	value	of	information	remains	equal	to	its	cost.		Alternatively,	one	could	argue	

that	frictions	in	the	labour	market	for	analysts	support	predictions	based	on	a	fixed	

fraction	of	informed	traders.		 	
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Figure	1	

The	value	of	information	is	higher	in	the		
two-asset	market	than	the	one-asset	market	for	all	levels	of	liquidity	noise	

Φ 2 asset > Φ 1 asset 	for	all	w1	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	2	

The	equilibrium	fraction	of	informed	traders	is	higher	in	the	two-asset	market	than	
the	one	asset	market	

Φ 2 asset, λ!"∗ =  Φ 1 asset, λ!"∗ = C and 𝜆!!∗ > 𝜆!!∗  	

	

	

	

	

	

	

	

	

	

	

	

	 	

0																																										w1																																								∞	

lim
!!⟶!

Φ!" =
𝜌
2 𝑙𝑜𝑔 !

ℎ + 𝑠
𝑠 !	

lim
!!⟶!

Φ!"

=
𝜌
2 𝑙𝑜𝑔 !

(ℎ + 𝑠)(𝑔 + ℎ)
(𝑔 + ℎ)𝑠 + 𝑔ℎ!	

C	

0			   𝜆!!∗          𝜆!!∗ 													λ																																					1	
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APPENDIX	

	

Derivation	of	equilibrium	price	and	value	of	information	in	one-asset	market:		

	

Lemma	1	

Substitute	in	the	mean	and	variance	values	from	(2)	and	(4)	into	the	demand	

functions	in	(5),	then	substitute	these	demands	into	the	market	clearing	condition	in	

(6),	then	solve	for	P	to	get		

	

	
𝑃 = 𝜆 𝜂 +

ℎ𝑌!
ℎ + 𝑠 𝑔 +

ℎ𝑄!!
ℎ + 𝑄!!

+ 1− 𝜆 𝜂 +
ℎ 𝑌! − 𝑍𝑋!
ℎ + 𝑄!!

𝑔 +
ℎ𝑠
ℎ + 𝑠

−
𝑔 + ℎ𝑠

ℎ + 𝑠 𝑔 + ℎ𝑄!!
ℎ + 𝑄!!

𝑋!
𝜌  	

	

	

	

	

	

	

(A1)	

÷ 𝜆 𝑔 +
ℎ𝑠
ℎ + 𝑠 + (1− 𝜆) 𝑔 +

ℎ𝑄!!
ℎ + 𝑄!!

.	

	

	

Note	that	(A1)	is	linear	in	Yi	and	X1.		The	equilibrium	price	is	determined	by	

equating	the	coefficients	in	(A1)	with	the	coefficients	in	our	conjectured	price,	P	=	a0	

+	a1Yi	–	a2X1.		More	precisely,	recalling	that	Z	=	a2/a1,	we	need	to	equate	the	ratio	of	

coefficients	on	X1	to	Yi	in	(A1)	to	Z.		Defining	G	=	gh	+	gs	+	hs,	this	gives	

	

	
𝑍 =

1− 𝜆 ℎ𝑍𝐺 + 𝐺(𝑔ℎ + 𝑔𝑄!! + ℎ𝑄!!)/𝜌
𝜆ℎ 𝑔ℎ + 𝑔𝑄!! + ℎ𝑄!! + 1− 𝜆 ℎ𝐺 .	

(A2)	

	

Substitute	in	Q1a	=	s	+	Z2w1	from	(4)	and	simplify	to	get		
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𝑍! − 𝑍!

𝐺
𝜆𝜌ℎ + 𝑍

𝐺
𝑔 + ℎ 𝑤!

−
𝐺!

𝜆𝜌ℎ 𝑔 + ℎ 𝑤!
= 0. 	

	

(A3)	

The	solution	to	this	cubic	defines	the	equilibrium	Z,	and	thus	the	equilibrium	

coefficients	in	the	price	equation.		Factoring	the	cubic	yields	the	unique	solution	

	

	 𝑍 =
𝑎!
𝑎!

=
𝐺
𝜆𝜌ℎ.	

	

(A4)	

Derivation	of	equilibrium	prices	and	value	of	information	in	two-asset	market	

	 Picking	up	from	equations	(19)	and	(20)	in	the	main	body	of	the	paper,	

market	clearing	gives	us	

𝑃! =  𝜂 −
𝑔
𝜌 𝑋! + 𝑋!  𝑎𝑛𝑑	

	

	

𝑃! =  𝜂 −
𝑔
𝜌 𝑋! + 𝑋! +  

𝜆𝑌!
𝑠 + 1− 𝜆 𝑃!

𝑄!!
− 𝑋!𝜌

𝜆 ℎ + 𝑠
ℎ𝑠 + 1− 𝜆 ℎ + 𝑄!!

ℎ𝑄!!

	

	

(A5)	

Recall	that	 𝑃! = 𝑌! −
!!
!!

𝑋! −  !!
!!

𝑋! = 𝑌! − 𝑍!𝑋! − 𝑍!𝑋! 𝑎𝑛𝑑	

	

	 𝑄!! = 𝑉𝑎𝑟 𝜖 − 𝑍!𝑋! − 𝑍!𝑋!) = (𝑠 + 𝑍!!𝑤! + 𝑍!!𝑤! . 	

	

(A6)	

The	RHS	of	P1	is	linear	in	Yi,	X1	and	X2.		Denoting	the	denominator	D	as	

	

	 𝐷 =  𝜆
ℎ + 𝑠
ℎ𝑠 + 1− 𝜆

ℎ + 𝑄!!
ℎ𝑄!!

, 	

	

(A7)	

the	coefficients	in	P1	are	as	follows:	
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 𝑜𝑛 𝑌! : 

𝜆
𝑠 +

1− 𝜆
𝑄!!
𝐷 ,	

	

(A8)	

	

	

 𝑜𝑛 − 𝑋! : 
𝑔
𝜌 +

1
𝜌 +

1− 𝜆 𝑍!
𝑄!!
𝐷 ,𝑎𝑛𝑑	

	

	

(A9)	

	

	

 𝑜𝑛 − 𝑋! : 
𝑔
𝜌 +

1− 𝜆 𝑍!
𝑄!!
𝐷 .	

	

	

(A10)	

Equating	the	ratio	of	coefficients	in	𝑃! = 𝑎! + 𝑎!𝑌! − 𝑎!𝑋! − 𝑎!𝑋! given	above	with	

their	assumed	values	Z1	and	Z2	gives			

	

	
𝑎!
𝑎!
= 𝑍! =

 𝑔𝐷𝜌 + 1𝜌 +
1− 𝜆 𝑍!
𝑄!!

𝜆
𝑠 +

(1− 𝜆)
𝑄!!

 𝑎𝑛𝑑	

	

	

(A11)	

	

	

 
𝑎!
𝑎!
= 𝑍! =

 𝑔𝐷𝜌 + 1− 𝜆 𝑍!
𝑄!!

𝜆
𝑠 +

(1− 𝜆)
𝑄!!

.	

	

	

(A12)	

The	equilibrium	price	is	determined	by	the	solution	to	the	system	given	in	(A11)	

and	(A12).	To	reduce	this	to	one	equation,	define	G	=	gh	+	gs	+	hs	and	G’	=	λgh	+	gs	+	

hs.		(A11)	and	(A12)	can	then	be	written	as		

	

	 𝑄!! 𝑍!𝜆𝜌ℎ − 𝐺! − 1− 𝜆 𝑔ℎ𝑠 = 0 𝑎𝑛𝑑 	 (A13)	
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	 𝑄!! 𝑍!𝜆𝜌ℎ − 𝐺! + ℎ𝑠 − 1− 𝜆 𝑔ℎ𝑠 = 0. 	

	

(A14)	

Equating	the	two	equations	gives	Z2	=	Z1	–	s/λρ.		By	substituting	Z2	=	Z1	–	s/λρ	into	

(A13),	we	can	reduce	the	system	to	a	cubic	in	Z1.		In	particular,	the	equilibrium	is	

determined	by	the	root	to	the	following	equation:	

	

	 𝜆𝜌ℎ 𝑤! + 𝑤! 𝑍!! − 𝐺! 𝑤! + 𝑤! + 2ℎ𝑠𝑤! 𝑍!!	 (A15)	

	

	
  + 𝜆𝜌ℎ 𝑠 +

𝑠
𝜆𝜌

!
𝑤! + 𝐺!

2𝑠
𝜆𝜌 𝑤! 𝑍! − 𝐺! 𝑠 +

𝑠
𝜆𝜌

!
𝑤! − 1− 𝜆 𝑔ℎ𝑠 = 0. 	

	

	

An	analytic	solution	is	not	readily	available,	and	simulations	show	that	the	root	

depends	on	every	parameter	in	the	model.		However,	the	solution	lies	in	a	known	

range.		Substituting	G’/λρh	for	Z1	in	(A15)	gives	a	strictly	negative	result	and	

substituting	G/λρh	for	Z1	gives	a	strictly	positive	result.	Thus,	any	solution	to	the	

cubic	resides	in	the	range	(G’/λρh,	G/λρh).		As	a	check,	note	that	setting	g	=	0,	so	that	

G’	=	G	=	hs,	gives	Z1	=	s/λρ	as	a	root	to	(A15).		This	is	the	same	as	the	solution	to	the	

cubic	given	in	(A4)	when	g	=	0	for	the	one-asset	market.			

	 Further,	the	solution	to	the	cubic	in(A15)	is	unique.		To	see	this,	note	from	

(A13)	that	Q2a	and	(𝜆𝜌ℎ𝑍! − 𝐺!)	are	both	strictly	positive,	both	are	increasing	in	Z1,	

and	their	product	must	equal	the	positive	constant	 1− 𝜆 𝑔ℎ𝑠	at	a	root	to	the	

equation.		Suppose	a	second	solution	𝑍!!exists	that	is	greater	than	the	root	Z1.		This	

would	increase	both	parts	of	the	product	but	not	change	the	constant	and	so	could	

not	constitute	a	solution	to	the	equation;	similarly,	a	candidate	second	solution	

𝑍!! that	is	less	than	Z1	would	reduce	both	parts	of	the	product	and	not	change	the	

constant	and	so	also	could	not	constitute	a	solution.		Consequently,	there	is	only	one	

solution.	
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Other	properties	of	the	equilibrium	Z1	

We	need	to	establish	some	properties	of	the	equilibrium	that	will	be	used	later	to	

prove	Theorem	One.		First,	viewing	the	cubic	as	an	implicit	function	that	defines	Z1,	

we	can	compute	the	first	derivatives	of	Z1	with	respect	to	w1	and	w2.		Differentiate	

both	sides	of	(A15)	with	respect	to	w2	to	get	

	

𝜆𝜌ℎ𝑤!3𝑍!!
𝜕𝑍!
𝜕𝑤!

+ 𝜆𝜌ℎ 𝑤!3𝑍!!
𝜕𝑍!
𝜕𝑤!

+ 𝑍!! − 𝐺!𝑤!2𝑍! 
𝜕𝑍!
𝜕𝑤!

− (𝐺! + 2𝑠ℎ) 𝑤!2𝑍! 
𝜕𝑍!
𝜕𝑤!

+ 𝑍!! 	

	

	
+𝜆𝜌ℎ𝑠

𝜕𝑍!
𝜕𝑤!

+ 2𝐺! + 𝑠ℎ
𝑠ℎ
𝜆𝜌ℎ 𝑤!

𝜕𝑍!
𝜕𝑤!

+ 𝑍! −  𝐺′
𝑠ℎ
𝜆𝜌ℎ

!

= 0	
(A16)	

	

Solving	for	!!!
!!!

	gives	

	

	
𝜕𝑍!
𝜕𝑤!

=  
− 𝑍! −

𝑠ℎ
𝜆𝜌ℎ

!
(𝜆𝜌ℎ𝑍! − 𝐺!)

𝐷!
 𝑤ℎ𝑒𝑟𝑒 	

	

	

(A17)	

	

	𝐷𝐷! = 𝑍!𝑤! 3𝜆𝜌ℎ𝑍! − 2𝐺! + 𝜆𝜌ℎ𝑠	

	

+
𝑤!
𝜆𝜌ℎ  2 𝜆𝜌ℎ𝑍! − 𝐺! 𝜆𝜌ℎ𝑍! − 𝑠ℎ + 𝜆𝜌ℎ𝑍! − 𝑠ℎ ! .	

	

	

	

The	lower	bound	on	Z1	implies	that	(𝜆𝜌ℎ𝑍! − 𝐺′)	is	strictly	positive	and	so	the	

numerator	of	(A17)	is	negative.		Further,	the	denominator	D1	is	positive.		To	see	this	

note	that	G’	>	sh	and	so	the	lower	bound	also	implies	that	 𝜆𝜌ℎ𝑍! − 𝑠ℎ 	is	also	

positive.	Thus,	!!!
!!!

< 0.			

	

	 Next	differentiate	the	cubic	in	(A15)	with	respect	to	w1	to	get	
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𝜆𝜌ℎ𝑤!3𝑍!!
𝜕𝑍!
𝜕𝑤!

+ 𝜆𝜌ℎ 𝑤!3𝑍!!
𝜕𝑍!
𝜕𝑤!

+ 𝑍!! −𝑤!(𝐺! + 2𝑠ℎ)2𝑍! 
𝜕𝑍!
𝜕𝑤!

− 𝐺′ 𝑤!2𝑍! 
𝜕𝑍!
𝜕𝑤!

+ 𝑍!! 	

	

	
+ 𝜆𝜌ℎ𝑠 +  𝜆𝜌ℎ𝑤!

𝑠ℎ
𝜆𝜌ℎ

!

+ 𝐺!𝑤!
2𝑠ℎ
𝜆𝜌ℎ   

𝜕𝑍!
𝜕𝑤!

= 0	
(A18)	

	

Solving	for	!!!
!!!

	gives	

	

	 𝜕𝑍!
𝜕𝑤!

=  
−𝑍!!(𝜆𝜌ℎ𝑍! − 𝐺!)

𝐷!
 𝑤ℎ𝑒𝑟𝑒 𝐷! 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑠 𝑔𝑖𝑣𝑒𝑛 𝑎𝑏𝑜𝑣𝑒. 	

(A19)	

	

The	same	argument	as	above	yields	!!!
!!!

< 0.			

	

	 Finally,	we	need	the	second	derivative	with	respect	to	w1	when	w2	is	set	to	

zero.	Evaluating	!!!
!!!

	at	w2	=	0	gives	

	

	 𝜕𝑍!
𝜕𝑤!

=  
−𝑍!!(𝜆𝜌ℎ𝑍! − 𝐺!)

𝑍!𝑤! 3𝜆𝜌ℎ𝑍! − 2𝐺! + 𝜆𝜌ℎ𝑠
. 	

(A20)	

	

Differentiating	(A20)	by	w1	gives	

	

	 𝜕!𝑍!
𝜕𝑤!

=
𝑤!𝑍! 3𝜆𝜌ℎ𝑍! − 2𝐺! + 𝜆𝜌ℎ𝑠 ∗ −3𝜆𝜌ℎ𝑍!!

𝜕𝑍!
𝜕𝑤!

+ 2𝐺!𝑍!
𝜕𝑍!
𝜕𝑤!

— 𝑍!! 𝜆𝜌ℎ𝑍! –𝐺! ∗ 3𝜆𝜌ℎ 2𝑤!𝑍!
𝜕𝑍!
𝜕𝑤!

+ 𝑍!! − 2𝐺! 𝑤!𝑍!
𝜕𝑍!
𝜕𝑤!

+ 𝑍!
	

	

	

	

	

(A21)	

÷ 𝑍!𝑤! 3𝜆𝜌ℎ𝑍! − 2𝐺! + 𝜆𝜌ℎ𝑠 !.	
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The	sign	of	(A21)	is	determined	by	the	numerator.		Substituting	in	(A19)	for	!!!
!!!

	

gives	

	

	
  𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 = 2𝑍!! 𝜆𝜌ℎ𝑍! –𝐺! 3𝜆𝜌ℎ𝑍! – 2𝐺! −

𝑍!! 𝜆𝜌ℎ𝑍! –𝐺! ! 6𝜆𝜌ℎ𝑍! – 2𝐺!

3𝜆𝜌ℎ𝑍! – 2𝐺! + 𝜆𝜌ℎ𝑠
. 	

(A22)	

	

The	𝜆𝜌ℎ𝑠	term	in	the	denominator	of	the	second	term	makes	this	negative	value	

smaller.		Ignoring	the	𝜆𝜌ℎ𝑠	term	and	some	simplification	gives	

	

	
  𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 =

2𝑍!! 𝜆𝜌ℎ𝑍! –𝐺!  3 2𝜆𝜌ℎ𝑍! –𝐺! 𝜆𝜌ℎ𝑍! –𝐺! + 𝜆𝜌ℎ𝑍! 𝐺′
3𝜆𝜌ℎ𝑍! – 2𝐺!

> 0, 	
(A23)	

	

so	that	!
!!!
!!!

> 0.		

	

	 The	final	properties	of	Z1	we	need	are,	with	w2	=	0,	where	it	lies	when	w1	=	0	

and	where	it	converges.	Setting	w2	=	w1	=	0	in	(A15)	gives	

	

	 𝑍! 𝑤! = 0 =  
𝐺  

𝜆𝜌ℎ. 	
	

(A24)	

	

Taking	the	limit	with	respect	to	w1	is	a	bit	more	complicated,	but	the	key	is	to	

remember	that,	even	though	Z1	is	unknown	and	depends	on	w1,	it	is	bound	in	

(G’/λρh,	G/λρh).		Therefore	none	of	the	Z1	terms	go	to	infinity.		With	w2	=	0,	taking	

the	limit	of	both	sides	of	the	equality	in	(A15)	gives		

	

	
lim
!!→!

𝑍! 𝑤! = lim 𝑤!𝑍!!(𝜆𝜌ℎ𝑍! − 𝐺!) = 0,𝑤ℎ𝑖𝑐ℎ 𝑜𝑐𝑐𝑢𝑟𝑠 𝑎𝑡 
𝐺!

𝜆𝜌ℎ . 
 	

(A25)	
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Proof	of	Lemma	4	

	 The	sensitivity	of	the	value	of	information	to	liquidity	noise	is	driven	by	the	

sensitivity	of	price	noise	Q2a	to	liquidity	noise.		Differentiating	Q2a	with	respect	to	w1	

gives	

	

	 𝜕𝑄!!
𝜕𝑤!

=  2𝑍!
𝜕𝑍!
𝜕𝑤!

𝑤! + 𝑍!! + 2𝑍!
𝜕𝑍!
𝜕𝑤!

𝑤!. 	
(A26)	

	

Because 𝑍! = 𝑍! −
!
!!

,	the	derivatives	of	Z2	with	respect	to	w1	and	w2	are	the	same	

as	the	derivatives	for	Z1,	as	given	in	(A17)	and	(A19).		Substituting	in	!!!!!!
	for	!!!

!!!
	in	

(A26)	and	then	substituting	in	(A19)	for	!!!
!!!

	gives	

	

	 𝜕𝑄!!
𝜕𝑤!

=  𝑍!! 1−
2(𝜆𝜌ℎ𝑍! − 𝐺!)(𝑍!𝑤! + 𝑍!𝑤!)

𝐷!
, 	

(A27)	

	

where	D1	is	given	in	(A17)	as	

	

	𝐷𝐷! = 𝑍!𝑤! 3𝜆𝜌ℎ𝑍! − 2𝐺! + 𝜆𝜌ℎ𝑠	

	

+
𝑤!
𝜆𝜌ℎ  2 𝜆𝜌ℎ𝑍! − 𝐺! 𝜆𝜌ℎ𝑍! − 𝑠ℎ + 𝜆𝜌ℎ𝑍! − 𝑠ℎ ! .	

	

	

The	bracketed	term	in	(A27)	is	positive	because	the	fraction	in	the	bracketed	term	is	

less	than	one.		To	see	this,	note	that	

	

	 𝑍!𝑤! 3𝜆𝜌ℎ𝑍! − 2𝐺! > 2 𝜆𝜌ℎ𝑍! − 𝐺! 𝑍!𝑤! 𝑎𝑛𝑑	

	

(A28)	

		

	 2 𝜆𝜌ℎ𝑍! − 𝐺! 𝜆𝜌ℎ𝑍! − 𝑠ℎ
𝑤!
𝜆𝜌ℎ > 2 𝜆𝜌ℎ𝑍! − 𝐺! 𝑍!𝑤!	 (A29)	
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and	so	!!!!
!!!

> 0.	A	parallel	argument	establishes	!!!!
!!!

> 0.	

	

Comparing	the	two	derivatives	gives	

	

	 𝜕𝑄!!
𝜕𝑤!

−  
𝜕𝑄!!
𝜕𝑤!

= 𝑍! − 𝑍! 𝑍! + 𝑍! 1−
2 𝜆𝜌ℎ𝑍! − 𝐺! 𝑍!𝑤! + 𝑍!𝑤!

𝐷!
> 0	

	

(A30)	

where	the	bracketed	term	is	positive,	as	shown	above.		

	

Proof	of	Theorem	One.	

	 Equation	(26)	in	the	text	gives	the	following	condition	for	the	theorem	to	

hold:	

		

	
𝑄!! > 𝑠

𝐺 + 𝑔 + ℎ 𝑍!𝑤!
𝐺 + 𝑔𝑍!𝑤!

.	

	

(A31)	

To	bring	the	equilibrium	condition	into	play,	use	(A13)	to	write		

	

	
𝑄!! =

1− 𝜆 𝑔ℎ𝑠
𝑍!𝜆𝜌ℎ − 𝐺!

	

. 	

(A32)	

and	then	solve	for	Z1	to	get	the	following	condition	imposed	on	the	equilibrium	Z1	

for	the	theorem	to	be	true.	

	

	
𝑍! <

𝐺′
𝜆𝜌ℎ +

1− 𝜆 𝑔ℎ
𝜆𝜌ℎ

𝐺 + 𝑔𝑍!𝑤!
𝐺 + (𝑔 + ℎ)𝑍!𝑤!

.	

	

(A33)	

The	value	G’/λρh	is	the	lower	bound	on	Z1	and	the	value	(1-λ)gh/λρh	is	the	

difference	between	the	upper	bound	and	the	lower	bound	of	Z1.		So,	for	example,	if	

w1	=	0,	the	bracket	term	equals	one,	the	RHS	is	the	upper	bound	on	Z1	and	the	
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condition	for	the	theorem	is	met.		The	general	proof	involves	treating	both	sides	of	

(A33)	as	a	function	of	w1	and	showing	that	the	RHS	is	greater	than	the	LHS	at	all	

values	of	w1.			

	 Start	with	the	RHS	of	(A33).		From	(A4)	substitute	in	Z=	G/λρh	from	the	one-

asset	and	evaluate	at	w1	=	0	to	get	the	RHS	equals	G/λρh.		The	derivative	of	the	RHS	

with	respect	to	w1,	evaluated	at	w1=0,	is	

	

	 𝜕𝑅𝐻𝑆
𝜕𝑤!

=
− 1− 𝜆 𝑔ℎ!𝐺

𝜆𝜌ℎ ! .	

	

(A34)	

Finally,	the	limit	of	the	RHS	as	w1	goes	to	infinity	is	

	

	 𝐺′
𝜆𝜌ℎ +

1− 𝜆 𝑔ℎ
𝜆𝜌ℎ

𝑔
𝑔 + ℎ .	

	

(A35)	

In	sum,	the	RHS	starts	at	G/λρh	and	decreases	monotonically	to	the	limit	given	in	

(A35).		

	 Now	consider	the	LHS	of	(A33);	the	equilibrium	Z1.		From	(A17)	above,	
!!!
!!!

< 0	at	all	values	of	w1.		Because	we	are	looking	for	a	Z1	lower	than	a	bound,	

without	loss	of	generality	we	can	consider	the	maximal	value	of	Z1	by	setting	w2=0.		

With	this,	we	see	from	(A24)	that	Z1(w1	=	0)	=	G/λρh;	the	same	starting	point	as	the	

RHS.		Next,	(A19)	gives	!!!
!!!

.	Evaluating	this	at	w1	=	w2	=	0,	and	substituting	in	Z1=	

G/λρh	gives	

	 𝜕𝑍!
𝜕𝑤!

=  
− 1− 𝜆 𝑔ℎ𝐺!

𝜆𝜌ℎ !𝑠 .	
(A36)	

	

Comparing	the	derivatives	of	the	RHS	and	LHS	with	respect	to	w1	evaluated	at	0,	as	

given	in	(A34)	and	(A36),	shows	that	the	LHS	decreases	from	zero	at	a	greater	rate.	

Next,	as	w1	goes	to	infinity,	the	LHS	goes	to	G’/λρh,	as	given	in	(A25),	which	is	

strictly	lower	than	the	limit	of	the	RHS	as	given	in	(A35).		Thus,	the	LHS	starts	at	the	
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same	place	as	the	RHS,	then	decreases	faster	and	limits	out	lower.		Finally,	(A23)	

shows	that	the	second	derivative	of	Z1	is	positive	everywhere.		This	rules	out	the	

possibility	that	the	Z1	function	flattens	out	and	crosses	the	RHS	condition	before	

finally	limiting	to	a	lower	value.	
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