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Abstract

Using a principal-agent setting in which the agent has a rich action space, we provide
a theoretical justification for contracting on highly-aggregated accounting metrics. We
show that the optimal contracting process can be decomposed into three stages: 1) con-
structing unbiased estimates of items that the principal values, 2) aggregating those
estimates using the weights in the principal’s objective (as opposed to weighting by
sensitivity or precision), and 3) compensating the agent on the aggregated estimate.
This process mirrors how accounting measurement, aggregation and executive compen-
sation are done in practice. Our results reconcile the conflict between the stewardship
and valuation uses of information; when the agent has flexible control over firm per-
formance, evaluating the manager and valuing the firm are one and the same. In a
tractable specification of our model in which normal distributions arise endogenously,
we show that optimal measurement rules are conservative yet produce unbiased es-
timates. Moreover, a weaker link between investment and future returns warrants
more conservative treatment of expected future benefits, providing a rationale for the
immediate expensing of R&D, the capitalization of PP&E and the accrual of credit
sales.
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tian Leuz, Valeri Nikolaev, Haresh Sapra, Abbie Smith, Frank Zhou and participants in the DAR & DART
Accounting Theory Seminar, the Chicago Booth Accounting Research Workshop, the Accounting and Eco-
nomics Society webinar, Columbia Business School, the Wharton School of the University of Pennsylvania,
and the EIASM Workshop on Accounting and Economics. We gratefully acknowledge financial support from
the Booth School of Business and research assistance from Junyoung Jeong. The authors can be contacted
at Jonathan.Bonham@chicagobooth.edu and amoray@chicagobooth.edu.

mailto:Jonathan.Bonham@chicagobooth.edu
mailto:amoray@chicagobooth.edu


Bonham & Riggs-Cragun Aggregated Estimates November 9, 2022

1 Introduction

Executive compensation committees have access to enormous databases of information for

evaluating and compensating executives, but executive pay is typically tied to a few highly

aggregated accounting metrics such as total revenue or net income.1 In practice, this reduc-

tion of rich data into a few metrics occurs on two levels. The first, which we call measurement,

is the process by which observable transactions and events are used to estimate the individ-

ual accounting items recorded in journal entries. The second, which we call aggregation, is

the linear process by which individual entries are summed up to form aggregated metrics,

such as those that appear on the financial statements.

Classical agency theory suggests that these aggregated accounting metrics are inefficient

for contracting. For example, the results from Banker and Datar [1989] indicate that accounts

should be weighted according to their relative sensitivity and precision, rather than being

added up with weights of 1 or −1 according to double-entry conventions. More generally,

prior theory shows a conflict between the valuation and contracting uses of information,2

raising the question of why metrics generated by the measurement and aggregation rules of

U.S. GAAP – a valuation-oriented system – would be used for contracting purposes. Absent

imposing additional frictions on the moral hazard problem (such as costs of contracting

complexity), agency theory has yet to explain why executive compensation contracts are

conditioned on these highly-aggregated, valuation-oriented accounting metrics.

Using an unconventional approach to moral hazard where the agent has a very rich

action space, we provide a framework for measurement and aggregation that closely maps

to how accounting is done in practice. Our framework rectifies the conflict between the

valuation and contracting uses of information and shows that contracting on aggregated

accounting metrics can be just as efficient as contracting on all of the data used to measure

their underlying components.

We draw our conclusions from an agency model in which a principal cares about a set of

unobservable constructs, x, which she values according to the linear function B(x) = bT x,

which we term the principal’s objective.3 We assume that the constructs x are not directly

1For example, four in five CEO performance-based awards are tied to accounting metrics,

with income and sales measures among the most common (De Angelis and Grinstein [2015],

Figure 1).
2See Gjesdal [1981], Paul [1992], Feltham and Xie [1994], and Lambert [2001].
3For example, B(x) could be net present value, where x are cash flows that arrive in different
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contractible, but there is a vector of observable data y available to the principal. To form the

basis of a legally-enforceable contract, y must be objective and verifiable; building on prior

ideas from accounting thought, we interpret y as the set of verifiable exchanges, transaction

characteristics, and events relevant to the contracting period.4

We assume that the agent chooses a joint distribution, f(x,y), directly from the space

of all possible distributions over x and y. This is the key assumption that drives our results

and diverges from prior work. Beginning with the seminal work of Holmström [1979], agency

theory has been dominated by the parameterized distribution formulation of the moral haz-

ard problem, which models the agent as affecting the parameter(s) of a distribution whose

functional form is outside of the agent’s control. We take an alternative (though not novel)

approach, adopting what Hart and Holmström [1987] termed the generalized distribution

formulation of the moral hazard problem, which assumes that the agent can implement any

distribution nonparametrically. This rich action space captures the immense flexibility that

executives have in running a company. Executives might affect variance by adjusting the

riskiness of the firm’s project portfolio, increase skewness by allocating investments to ex-

ploratory R&D projects, and introduce discontinuities by managing earnings around salient

thresholds.

Solving the principal’s program, we first characterize the optimal contract conditioned

on all of the data in y. This is akin to a contract conditioned on every piece of verifiable data

relevant to the firm, which is not descriptive of practice. For public firms, such a contract

would be practically infeasible due to the sheer volume of transactional data (for example,

Amazon ships 584 million packages a year). We therefore turn to optimal data reduction

– a central function of accounting – and examine composite metrics that are efficient or

(weakly) optimal for contracting purposes, meaning that there is no loss to contracting on

the composite metric(s) relative to contracting on all of the data in y.

periods and b is a vector of discount factors. Alternatively, B(x) might represent Hicksian

income, where x consists of increases and decreases in shareholder wealth and b consists of

corresponding weights of one or negative one.
4Butterworth, Gibbins, and King [1982] suggest that the set of exchange transactions between

the firm and outside parties provide a natural basis for contracting. Likewise, Paton and

Littleton [1940] note that the inflowing and outflowing “facts of services rendered” are

generally objective, and Leuz [1998] suggests that past transactions and events are verifiable

and are likely to contain information pertinent to prevailing incentive problems.
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We show that the data y enters the contract through the conditional expectation

Ef [B(x)|y] = bT Ef [x |y], (1)

where Ef [x |y] are the expected values of the constructs x given the data y under the equi-

librium action f . Hence, a contract conditioned on the single aggregate B(x̂) ≡ bT Ef [x |y]

is just as efficient as the highly complex contract conditioned on all of the data in y.

This suggests a very natural decomposition of the optimal contracting process into three

distinct stages: measurement, aggregation, and compensation. In the measurement stage,

the principal uses observable data y to construct estimates, x̂ ≡ Ef [x |y], of the unobservable

constructs x. This is akin to using observable transaction characteristics and events (y) –

such as delivery status, cash collections, payments to suppliers, and customer credit history –

to produce imperfect measures (x̂) of the FASB-defined constructs of revenues and expenses

(x). In the aggregation stage, the individual estimates x̂ are linearly aggregated according to

the weights b to form one or more composite measures. For example, if the principal cares

equally about the revenues from each product, these revenues are simply summed up into

total revenues.5 Finally, the principal conditions the agent’s compensation contract on the

aggregated estimate(s).

Our three-step decomposition can rationalize contracting on aggregated accounting met-

rics in practice. As noted by Butterworth, Gibbins, and King [1982], “Relative shares can-

not be based on unobservable events,” (that is, the principal cannot write a contract on

the constructs x), which creates the need for “some tentative measure of enterprise perfor-

mance. . . for without it there can be no basis for assessment of the relative shares to which

the holders of relative interests are entitled, and therefore no basis for a contract between

them.” Accounting measurement provides these “tentative measures,” x̂, proxies for x that

are contractible because they are based on verifiable information y.6 Our results show that

5Note that this simple “summing up” occurs in the aggregation stage, not the measurement

stage. The measurement stage may generally be non-linear, as there are many contingencies

built into the measurement process. Thus, if the principal cares equally about revenues from

different products, then there is equally-weighted aggregation of the individual estimated

product revenues x̂, but not of the data y used to estimate those revenues.
6As noted by Ijiri [1975], “income per se and an income figure obtained as a result of mea-

suring income are two entirely different things” (p. 54). In our model, economic constructs

such as “income per se” are captured by x, and measures of those constructs are captured
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accounting proxies x̂ are contractually efficient if they are unbiased (E[x̂] = E[x]), or said

differently, if they faithfully represent the underlying economic constructs they purport to

represent, x. In practice, the individual estimates x̂ are entered into the accounting system

and linearly aggregated with a weight of 1 or −1 according to double entry conventions

(e.g. credits or debits on the income statement), while in our model, the estimates are

aggregated according to b, the linear weights in the principal’s objective. Therefore, our

results rationalize contracting on a given aggregated accounting metric to the extent that 1)

its components faithfully represent the economic constructs they purport to represent, and

2) the principal values the constructs equally, using the same debit/credit aggregation as a

conventional accounting system.

Prior accounting theory has tackled aggregation and measurement separately; we will

discuss our contribution to each in turn, beginning with aggregation. The standing authority

on optimal aggregation is Banker and Datar [1989]. In their seminal paper, Banker and Datar

show for certain classes of distributions, contractually optimal linear aggregates are formed

by weighting the underlying measures according to their relative precision and sensitivity.

That is, measures that have lower variance or are more responsive to managerial actions

should receive relatively higher weight. Lambert [2001] observes that this result suggests

that accounting aggregates, which are equally-weighted sums or differences of underlying

accounts, are unlikely to be efficient for contracting. (Indeed, no reference to sensitivity

or precision is made in the FASB definitions of financial accounting constructs.) Income

statement line items such as sales, cost of goods sold and depreciation are likely to vary

widely in their variance and in their sensitivities to CEO effort. Because aggregated income

statement items such as earnings before taxes (EBT) or net income subtract expenses from

revenues with no regard for differences in the sensitivity or precision of these components,

Banker and Datar’s result implies that those aggregated accounting metrics are inefficient

for contracting.

Our framework produces very different results. Notice from (1) that the optimal contract

can be conditioned on B(x) = bT x. The optimal linear weights for contracting are given

simply by b; that is, the optimal weight on each variable is determined solely by how much

the principal values it. For example, if shareholders intrinsically value each revenue and

expense item equally – which is almost a truism to the extent that revenues and expenses

are defined as changes in shareholder wealth – then an optimal compensation contract can

by x̂. Ijiri also notes that “the measurement process must begin with verifiable facts” (p.

36); these verifiable facts are captured in our model by y.
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be written on net income, which is an equally-weighted aggregate of all revenues and ex-

penses. Alternatively, if shareholders place a higher value on certain income statement items

(because, for example, GAAP revenue and expense constructs do not exactly conform to

changes in shareholder wealth), those items will be weighted more heavily for compensation

purposes. Hence, in our setting there is no conflict between the valuation and compensation

uses of information, consistent with the empirical findings of Bushman, Engel, and Smith

[2006] and Banker, Huang, and Natarajan [2009].

The intuition for this result stems from the agent’s rich action space under the generalized

distribution approach, which creates a one-to-one mapping between the contract offered and

the distribution implemented. Whereas in the classic parametric approach the principal can

choose the best possible contract that implements a given distribution, under the generalized

approach, any change in the contract causes the agent to change his action. If the principal

attempts to squeeze risk-sharing efficiency from the contract by, for example, weighting the

signals by their relative precision, the agent will respond by taking an action that maximizes

the precision-weighted aggregate rather than the principal’s objective. Therefore, the best

the principal can do is hand control of her objective over to the agent (consistent with a

complete separation of ownership and control, e.g. Fama and Jensen [1983]).

Our aggregation results may have useful implications for empirical compensation re-

search, which often uses the sensitivity-precision result from Banker and Datar [1989] to

form predictions about executive compensation contracts. As noted by Bushman and Smith

[2001], it is difficult to empirically operationalize precision and (especially) sensitivity, and

consequently, the findings from this literature are mixed and sensitive to empirical specifi-

cation. For example, Core, Guay, and Verrecchia [2003] find that the relative weights on

performance measures are decreasing in relative variance when looking at CEO cash com-

pensation but increasing in relative variance when considering CEO total compensation,

suggesting that “existing findings on cash pay cannot be interpreted as evidence supporting

standard agency predictions.”

Our paper also contributes to the literature on optimal measurement. Accounting theory

has typically modeled measurement as a biased, one-step mapping from underlying funda-

mentals (e.g., x) to performance measures (e.g., x̂). As in Gao [2013], our framework takes

a two-step approach to accounting measurement. The first step is from unobservable firm

fundamentals, x, to observable transaction characteristics, y. This mapping is dictated by

f(y|x), which is under the control of the agent by his choice of f(x,y) = f(x)f(y|x). One

way to interpret this step is that while the principal cannot directly observe the underlying
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constructs she values (x) or the agent’s actions (f), the agent’s actions leave “traces” in the

form of y, observable and verifiable data such as transaction characteristics. Alternatively,

as in Gao [2013] the agent may take actions that distort transaction characteristics without

improving the underlying constructs for which they provide evidence; for example, the agent

might engage in channel stuffing to inflate inventory deliveries without improving sales. The

second step is from the transaction characteristics y to the estimates x̂, which in equilib-

rium are unbiased conditional expectations x̂ = Ef [x |y]. This step is under the control of

the principal, who writes measurement rules x̂(y) as part of the solution to her contracting

problem.

An optimal measurement rule x̂(y) dictates how observable transaction characteristics

y should be used to construct an unbiased estimate of x. To study optimal measurement, we

develop a highly tractable specification of our model in which the agent’s equilibrium action

is to mean-shift a normal distribution. (We do not impose normality on the solution; it arises

endogenously despite the agent’s ability to implement any distribution imaginable.) Using

this specification, we show that optimal measurement rules are conservative, whereas the

resulting measures themselves are unbiased. Because the manager can game the transaction

characteristics y in an attempt to overstate underlying performance, the optimal measure-

ment rule understates y to arrive at an unbiased estimate of x. Consistent with the findings

of Gao [2013] and the intuition suggested by Watts [2003], conservative accounting offsets

managerial manipulation to produce unbiased performance measures.

The extent of conservative bias required in the measurement stage depends on the ease

with which managers can game transaction characteristics. This has important implications

when accounting for investments with uncertain future returns, a central measurement issue

in accounting. To illustrate these implications, we present a simple application of our model

which suggests that optimal measurement depends on the availability of reliable evidence

about future returns. We find that when manipulating evidence about future returns is

infinitely costly to the manager, fair value accounting is optimal, but in all other cases,

the optimal measurement rule for a given investment depends on the likelihood that the

investment will produce future returns. In particular, the optimal measure is increasing

in the correlation between investment and future returns. When the correlation between

an investment and future returns is zero, the optimal measurement rule reports the cash

outlay and makes no attempt to estimate future returns; that is, the investment is fully

expensed. As the correlation between investment and future returns increases, the optimal

measurement rule expenses some, but not all, of the investment outlay. As the correlation
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increases further, the optimal measurement rule begins to incorporate some future returns,

and when the correlation is perfect, all future returns are included in income.

Although we abstract away from accrual reversals, the optimal measurement rule de-

scribed above applies to many conventions in accrual accounting. In cases where future

returns from an investment are highly uncertain, such as with R&D or advertising, GAAP

generally prescribes immediate expensing. In a credit sale, the sacrifice of inventory (the

“investment”) is highly correlated with the collection of cash; in this case, GAAP prescribes

revenue accrual. Investments in PP&E arguably have a moderate correlation with future

return; in this case, GAAP dictates deducting some, but not all, of the capital expenditure as

depreciation expense, but does not allow future returns from the investment to be accrued.

The pattern across these GAAP practices is that measurement of an uncertain invest-

ment depends on the likelihood that the investment will pay off, which is exactly what we

find. This idea was also expressed by Ordelheide [1988], who (roughly translated) notes

that whether a cash outlay is recorded as an asset depends on whether the cash outlay is

an indicator of future cash receipts. More generally, our optimal measurement rule for un-

certain investments is consistent with a basic feature of accrual accounting, that virtually

every accrual contains an implicit assumption about future events (Beaver [1991]). Assets

are probable future economic benefits, and hence, cost deferral and revenue accrual depends

on the probability of the cost being recovered or the revenue being realized.

The paper proceeds as follows. Section 2 discusses related work. In section 3, we revisit

the question of optimal aggregation studied by Banker and Datar [1989] in a benchmark

setting where measurement is perfect (i.e. x is observable). Here, we show that the efficient

linear aggregator weights the signals according to their weights in the principal’s objective,

not according to their relative sensitivities and precision. In section 4, we layer in the

measurement process by assuming that the constructs x are unobservable; here, we provide

a three-step decomposition of the contract that provides a theoretic rationale for contracting

on aggregated accounting estimates like net income. In section 5, we develop a tractable

specification of our model to investigate how the estimates of x are formed. We provide

stylized applications that illustrate the contracting rationale for conservatism (section 5.1)

and for conventional standards regarding accounting for uncertain investments (section 5.2).

Section 6 concludes and provides suggestions for future work. Proofs are in the appendix.

7



Bonham & Riggs-Cragun Aggregated Estimates November 9, 2022

2 Related Work

We study optimal data reduction on two levels, measurement and aggregation, that have been

studied separately in prior research. The aggregation component of our paper addresses the

same question tackled by Banker and Datar [1989]: Given a large number of signals under

an agent’s control, is there a way to linearly aggregate the signals such that there is no loss

to conditioning the contract on the aggregated metric relative to conditioning the contract

on all of the underlying signals?

Some papers in accounting introduce frictions that make aggregation strictly optimal.

For example, Amershi and Cheng [1989] derive a demand for aggregation by assuming it is

costly to design and implement contracts based on disaggregated data; intuitively, they show

that aggregation is optimal when the cost of contracting on many variables is outweighed

by the cost of the information loss resulting from aggregation. More recently, Arya and

Glover [2014] suggest several settings in which the information loss from aggregation is

actually beneficial. Our paper and Banker and Datar [1989] contain only the standard moral

hazard frictions – risk aversion and unobservability of the agent’s actions – and study how

weakly optimal aggregates are formed. Trivially, these aggregates would strictly dominate

if we introduced some cost to contracting on disaggregated information, such as a “cost of

complexity” that increases in the number of measures included in the contract.

Extending the setting studied by Banker and Datar [1989], we show that if the constructs

the principal cares about are unobservable, the optimal contract can be separated into three

stages – measurement, aggregation and contracting. As with aggregation, the measurement

stage may entail data reduction.7 Our decomposition of the solution into separate measure-

ment and contracting stages is related to Leuz [1999], who points out that contingencies

embedded in the accounting function could instead be included directly in contracts. We

show only weak optimality of separating the measurement and compensation functions, but

as Leuz [1999] suggests, one could introduce contracting costs to make the separation strictly

optimal. For example, if the principal contracts with multiple parties and there are costs to

designing and implementing each contract, there may be “returns to scale” from using the

7For example, assume that the principal cares only about one construct, x, such that B(x) =

x, and assume that x is unobservable but that the principal can observe the data y. A

(weakly) optimal measurement rule, x̂(y), uses the observable data y to produce a single

estimate, x̂ = Ef [x|y], such that there is no loss to contracting on the estimate relative to

contracting on the underlying data.
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same measures in multiple contracts.

We show that conditioning the contract on the aggregated estimate B(x̂) ≡ bT x̂ is just

as efficient as conditioning on all of the data in y. This rectifies the seemingly disjointed

valuation versus stewardship uses of accounting information: the contractually optimal way

to evaluate the manager using the data in y is to estimate the value of the principal’s

objective, B(x). This result stems from the agent’s flexible action space in our setting,

suggesting that when CEOs have very flexible control over firm performance, valuing the

firm and evaluating the manager are one and the same. Our results are in stark contrast to

findings from the classic approach, which have predicted that information is used differently

for valuation and stewardship (Gjesdal [1981], Paul [1992], Feltham and Xie [1994], Lambert

[2001]).

The main difference between our paper and conventional agency theory papers like

Banker and Datar [1989] is in how the agent’s action is modeled. The bulk of the agency lit-

erature uses the parameterized distribution formulation of the moral hazard problem, which

models the agent’s action (often interpreted as “effort”) as the choice of one or more pa-

rameters in the distribution(s) over relevant variables.8 For example, if we were to use the

parametric approach in our setting, we might model the agent as choosing an effort level, a,

that parameterizes the distribution over x and y, denoted f(x,y; a). Notice that under this

approach, the agent’s choice of a entails choosing a distribution from a restricted parametric

set; there is nothing he can do to break free of the functional form of f(x,y; a).

In this paper, we depart from the conventional parametric approach and instead adopt

the generalized distribution formulation; under this approach, the agent can directly choose

any distribution f(x,y). This approach captures the rich opportunity set available to firm

executives, with significant influence over the company’s operations, product offerings, in-

vestment portfolio and competitive strategy. The sheer number of books proffering business

advice (over 80,000 titles on Amazon) suggests that a CEO’s inputs are far more complex

8For example, it is common to assume that the agent chooses the first moment of a normal

distribution (e.g. Holmström and Milgrom [1991], Feltham and Xie [1994]); there, the agent

can mean-shift the normal distribution but has no control over its shape. Less commonly,

some papers assume that the agent influences both the first and second moments of a normal

distribution (e.g. Meth [1996]). Notice that while the agent in this case can affect both mean

and variance in this case, his influence over the distribution is still quite constrained. He has

no way of affecting skewness or kurtosis or of introducing discontinuities; by assumption,

the only distribution possible is a normal.
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than simply exerting effort (else those books could be replaced by the maxim, “Try hard”).

Moreover, many empirical papers in the accounting literature take it as given that execu-

tives can influence distributions nonparametrically; for example, discontinuities around zero

or analyst forecasts are often attributed to the management of real or measured earnings

(e.g., Burgstahler and Dichev [1997], Roychowdhury [2006]). Thus, the generalized approach

seems particularly descriptive of the role played by corporate executives.9

The terms “parameterized distribution formulation” and “generalized distribution for-

mulation” were coined by Hart and Holmström [1987] in their enlightening review of the

early agency literature, where they define and defend the generalized approach as follows

(Hart and Holmström [1987], pp.78-79).

Since the agent [in the parametric approach] in effect chooses among alternative
distributions, one is naturally led to take the distributions themselves as the
actions, dropping the reference to a. . . Of course, the economic interpretation of
the agent’s action and the incurred cost is obscured in this generalized distribution
formulation, but in return one gets a very streamlined model of particular use in
understanding the formal structure of the problem. This way of looking at the
principal’s problem is also very general. It covers situations where the agent may
observe some information about the cost of his actions, or the expected returns
from his actions, before actually deciding what to do; in other words, cases of
hidden information. To see this, simply note that whatever strategy the agent
uses for choosing actions contingent on information he observes, the strategy will
in reduced form map into a distribution choice. . . Thus, ex ante strategic choices
are equivalent to distribution choices in some [probability simplex] P .

In addition to the hidden information example described in the quote above, Holmström

and Milgrom [1987] justify the generalized approach with an example in which the agent

acts continuously throughout the period, conditioning his action on a privately observed

continuous state variable; they argue (and Hébert [2018] shows formally) that this setting

can be represented in reduced form as the agent choosing an unconditional distribution at

the outset.

The first paper to use the generalized approach was Holmström and Milgrom [1987]; in

section 2 of their paper, they model the agent as directly choosing the probability of every

9Outside the C-suite, there may be situations where the classic parametric approach is more

descriptive. A production line worker who functions as a “cog in the machine” is likely

powerless to change the shape of the distribution; here, the parametric approach seems

appropriate.
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(discrete) outcome in a single-period model. Holmström and Milgrom [1987] are better

known for what they do next. They divide the single period into subperiods and show

that as the subperiod length approaches zero, the solution approximates a continuous time

model in which the agent controls the drift of a Brownian motion, and moreover, that the

optimal contract is linear in the ending position of the Brownian process. This approximation

spawned the influential “LEN” model, which exogenously restricts contracts to be Linear,

assumes that the agent has negative Exponential utility, and models the agent’s action as

affecting the mean of a N ormal distribution. Notice that the LEN modeling assumptions

fall squarely under the parametric approach, because the agent’s choice of distributions is

restricted to a set of normal distributions with exogenously fixed variance. Interestingly, the

tractable specification we develop in section 5 produces solutions that share several features

with the LEN assumptions while remaining in a simple static setting; we do not introduce

multiple periods or Brownian motions to achieve linear contracts or normally distributed

performance measures.

Since Holmström and Milgrom [1987], very few papers have used the generalized distri-

bution formulation, perhaps because (as indicated in the Hart and Holmström [1987] quote

above) it is difficult to interpret the agent’s personal cost of “choosing a distribution.” An

important recent development is Hébert [2018], who studies optimal security design using

the generalized distribution formulation. Hébert [2018] pairs the generalized approach with

a novel cost function in which the agent’s disutility from implementing some distribution

f depends on the divergence of f from a cost-minimizing reference distribution g, and he

provides a micro-foundation for this pairing. We adopt Hébert’s intuitive cost function in

this paper, as do Bonham and Riggs-Cragun [2021], a close predecessor to this paper.

Bonham and Riggs-Cragun [2021] show that the generalized approach produces optimal

contracts that do not depend on likelihood ratios. The agent’s pay is conditioned directly on

the principal’s objective, rather than on what the realized outcome says about the agent’s

action. That intuition holds throughout the present paper as well; likelihood ratios do not

appear in our solutions. We extend Bonham and Riggs-Cragun [2021] to an accounting-

oriented setting in two ways. First, while Bonham and Riggs-Cragun [2021] assume that the

principal cares about a single variable, x, we assume that the principal cares about many

variables, x. This allows us to study optimal aggregation, an important feature of accounting.

Second, we develop a specification of the model that produces closed-form solutions, uniquely

optimal linear contracts, and normal distributions. This tractability allows us to investigate

optimal measurement, another issue central to accounting.
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In addition to the papers already mentioned, a few other papers use the generalized

distribution approach. Hellwig [2007] uses it to extend Holmström and Milgrom [1987]

to include boundary solutions; Bertomeu [2008] uses it to study risk management; and

Hemmer [2017] uses a binary version of it to study relative performance evaluation. Finally,

Bonham [2021] uses the generalized approach to study how measurement and contracts shape

productive incentives. In Bonham [2021], the agent has distributional control only over the

principal’s objective, x, which is assumed to be non-contractible. The relationship between

the objective, x, and the contractible signal, y, is beyond the agent’s control. By contrast,

we assume that the agent can influence the joint distribution over both the objective x and

observable signals y, allowing us to take a two-step approach to modeling measurement and

to study issues like window dressing.

3 Benchmark model: Contracting on aggregates

A principal cares about a set of unobservable constructs, x ≡ (x1 . . . xm)T . She might value

some constructs differently than others; we say that the principal values x ∈ Rm according to

her objective, B(x), where B : Rm → R. We will typically assume that the principal values

the constructs linearly such that B(x) = bT x. For example, B(x) might be the net present

value of the firm, where x are cash flows that arrive in different periods and b is a vector

of discount factors. Or B(x) might be Hicksian income,10 where x consists of increases and

decreases in shareholder wealth (i.e. net economic assets). In this case, bi = 1 for xi > 0

and bj = −1 for xj < 0; without loss of generality, we can group the elements of x such

that x1 . . . xt are increases in shareholder wealth and xt+1 . . . xm are decreases in shareholder

wealth, such that the principal’s objective of Hicksian income can be expressed as follows.

B(x) = x1 + x2 + . . .+ xt︸ ︷︷ ︸
increases in

wealth

− (xt+1 + . . .+ xm)︸ ︷︷ ︸
decreases in

wealth

(2)

Continuing with the example wherein B(x) is Hicksian income, x could be defined as

“earned” changes in wealth according to the FASB definitions of revenues and expenses.11

10Hicksian income is the change in the firm’s net economic assets other than from transactions

with owners, or equivalently, the amount that can be paid out in dividends during a period

while leaving the firm as well off at the end of the period as it was at the beginning of the

period (Hicks [1939]).
11FASB defines revenues as inflows or other enhancements of assets of an entity or settlements
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If FASB-defined revenues and expenses perfectly reflected changes in shareholder wealth,

the principal’s objective of Hicksian income would still be given by (2). But if the FASB

definitions do not align with changes in shareholder wealth, then b might be a set of weighting

adjustments to GAAP revenues and expenses such that the aggregate B(x) is Hicksian

income. For example, assume that the FASB constructs are defined by changes in shareholder

wealth with the exception of one revenue item, x1, which understates the true change in

shareholder wealth due to a stringent revenue recognition criterion. Then b consists of

weights of −1 on all expenses and 1 on all revenues, with the exception of b1 > 1, which

adjusts the revenue item to reflect the true increase in shareholder wealth such that B(x)

reflects Hicksian income.

B(x) = b1x1 + x2 + x3 + . . .+ xt︸ ︷︷ ︸
adjusted GAAP revenues

− (xt+1 + . . .+ xm)︸ ︷︷ ︸
GAAP expenses

(3)

These examples illustrate that the weights b in the principal’s objective depend to an

extent on how the constructs x are defined. A particular interpretation of the constructs x

is not needed for our analysis, but to contextualize our results we will often refer back to the

example of x as FASB-defined constructs of revenues and expenses.

The principal hires an agent to take unobservable actions that stochastically improve

x. To induce the agent to act in the principal’s interest, the principal designs a contract, s.

We assume in this section that the constructs x are directly contractible, i.e. the principal

writes a contract, s(x), where s : Rm → R pays the agent s(x) when the outcome x is

realized. This benchmark assumption allows us to study optimal aggregation in isolation

and facilitates a straightforward comparison to Banker and Datar [1989]. Let U(s) denote

the utility from compensation of a (weakly) risk averse agent, where U : R → R satisfies

U ′(·) > 0 and U ′′(·) ≤ 0. Denote the agent’s utility from outside options by Ū . Finally,

assume that the principal is risk neutral such that her utility is equal to her net payoff,

B(x)− s(·).
We study two questions in this section. First, under what conditions can the optimal

contract be conditioned on a linear aggregate of the outcomes x1, . . . , xm such that there is

of its liabilities (or a combination of both) from delivering or producing goods, rendering

services, or other activities that constitute the entity’s ongoing major or central operations.

FASB defines expenses as outflows or other using up of assets or incurrences of liabilities (or

a combination of both) from delivering or producing goods, rendering services, or carrying

out other activities that constitute the entity’s ongoing major or central operations.
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no loss relative to conditioning the contract on all m outcomes? Second, in cases where such

an optimal aggregate exists, what are the optimal linear weights on each measure? We first

present the classic result from Banker and Datar [1989] under the parametric approach and

then revisit the problem by invoking the generalized distribution approach.

3.1 The classic parameterized distribution approach

Under the conventional parameterized distribution approach taken by Banker and Datar

[1989], the agent’s action serves as a parameter in the joint distribution over x. Let the

agent choose effort level a ∈ A ⊆ R, where a parameterizes the joint probability density

function f(x; a). Exerting effort imposes a personal cost on the agent of V (a), where the

function V : R → R is increasing convex. Assume that the agent’s utility is additively

separable in his compensation and personal cost, so that we can write his total utility as

U(s)− V (a).

The principal’s goal is to design a contract-action pair, (s, a), that maximizes her net

payoff subject to two constraints. First, the agent’s expected utility under the proposed

scheme must be at least as high as his utility from outside options; this individual ratio-

nality (IR) constraint ensures that the agent accepts the contract. Second, the proposed

contract-action pair must be incentive compatible (IC), meaning that the agent will choose

the proposed a when faced with the proposed s. The principal’s maximization program is

given as follows, where fa(x; a) is the derivative of f(x; a) with respect to a and
∫
dx denotes

integration over x1, x2, . . . , xm.

max
s,a

∫
(B(x)− s(x))f(x; a)dx

s.t.
∫

(U(s(x))− V (a)) f(x; a)dx ≥ Ū

and
∫
U(s(x))fa(x; a)dx = V ′(a)

(4)

Let λ and µ be the multipliers on the IR and IC constraints, respectively. Standard

methods of pointwise optimization yield the following iconic characterization of the optimal

sharing rule.

1
U ′(s(x))

= λ+ µ · fa(x;a)
f(x;a)

(5)

The optimal contract is a transformation of λ+ µ · fa(x;a)
f(x;a)

; we can see this more readily
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by solving (5) for s(x).

s(x) = U ′−1
(

1/
(
λ+ µ · fa(x;a)

f(x;a)

))
. (6)

Banker and Datar [1989] point out that this solution can be decomposed into two stages: (1)

aggregating the measures x1, . . . , xm into a single composite measure, π(x), and (2) writing

a contract that is conditioned on that measure.

Aggregator: π(x) ≡ λ+ µ · fa(x;a)
f(x;a)

Contract: s(π(x)) = U ′−1
(

1
π(x)

) (7)

This decomposition shows that π(x) is an optimal linear aggregator for contracting; that is,

there is no loss to conditioning the contract on π(x) relative to conditioning the contract on

every element of x. Banker and Datar [1989] observe that when the likelihood ratio fa(x;a)
f(x;a)

is linear, the optimal aggregator π(x) is linear as well.12 They then characterize a large

class of parametric distributions for which likelihood ratios are linear, including the entire

exponential family, providing a rationale for contracting on certain linear aggregates.

Banker and Datar [1989] are best known for what they do next. Within a subclass of

distributions for which some linear aggregator is optimal, they characterize the relative linear

weights on the measures by their signal-to-noise ratios. Letting π(x) =
∑

j πjxj, the relative

weights on measures xi and xj in this optimal linear aggregator are characterized by:

πi
πj

= ∂E(xi|a)/∂a
Var(xi)

/
∂E(xj |a)/∂a

Var(xj)
(8)

Banker and Datar [1989] call ∂E(xi|a)/∂a the sensitivity of xi to the agent’s effort and

1/V ar(xi) the precision of xi. All else equal, the higher a measure’s sensitivity or precision,

the larger its relative weight in the optimal aggregator, π(x).

The sensitivity-precision result from Banker and Datar [1989] suggests that two perfor-

mance measures will receive equal weight only if their signal-to-noise ratios are identical.

As noted by Lambert [2001], there is something unsatisfying about this from an accounting

perspective. Executive compensation contracts are often conditioned on accounting aggre-

gates, which are equally-weighted sums and differences of many underlying accounts, and

it is unlikely that all of those accounts have identical signal-to-noise ratios. It is therefore

unclear from this result why executive compensation contracts are routinely conditioned

12Note that linearity in the aggregator, π, does not imply linearity in the contract, s.
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on aggregated accounting totals rather than on their (readily available and contractible)

disaggregated components.

3.2 The generalized distribution approach

We now revisit optimal linear aggregation by invoking the generalized distribution approach.

Assume that the agent chooses a distribution f(x) ∈ ∆(x), where ∆(x) denotes the space

of all probability distributions over x. There are many ways to think about how an agent

might “choose a distribution” nonparametrically in practice. In section 2, we referred to

two examples provided by Holmström and Milgrom [1987]. Our preferred interpretation is

to think of the agent as a CEO who faces an uncountably rich set of opportunities.

It is perhaps more straightforward to simply notice that modeling the agent as imple-

menting f(x; a) by her choice of a is just a constrained version of modeling the agent as choos-

ing f(x) directly. Under the classic approach, the agent’s choice of a is equivalent to choosing

a particular parametric distribution f(x; a) from the set {f(x; a)|a ∈ A}. The generalized

approach relaxes the parametric restriction and assumes that the agent can choose any dis-

tribution; that is, the agent selects f(x) from ∆(x) ≡ {f(x)|
∫
f(x)dx = 1, f(x) ≥ 0 ∀x}. If

one is willing to accept that an agent in the classic approach is capable of implementing a

particular f(x; a), it should not require a radical shift in thinking to accept our assumption

that the agent can implement a particular f(x). Of course, some distributions are more

difficult to implement than others, which brings us to the agent’s cost function.

Assume that the agent implements distribution f at personal cost V (f), a function we

redefine here as V : ∆(x)→ R. Let g(x) ∈ ∆(x) be the agent’s preferred or cost-minimizing

distribution, the distribution that he would implement if offered zero incentives. Following

Hébert [2018], we model the agent’s personal cost from implementing f by the Kullback-

Leibler divergence from g to f , denoted D(f(x)||g(x)).

V (f) = D(f(x)||g(x)) ≡
∫
f(x) ln

(
f(x)
g(x)

)
dx. (9)

Divergence (or relative entropy) measures the dissimilarity between two distributions and has

many applications in information theory and machine learning. For our purposes, it captures

the personal cost incurred by the agent when he takes the requisite actions to implement

distribution f when he prefers distribution g. Intuitively, the larger the divergence from g

to f , the larger the personal cost borne by the agent.13

13Note that this cost function cannot capture costless changes in risk. This rules out settings
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The KL-divergence cost function has several appealing properties that are discussed in

Bonham and Riggs-Cragun [2021] and repeated here for reference. First, the cost function is

non-negative: D(f ||g) = 0 for f = g and is positive otherwise; intuitively, the agent suffers

zero cost when he implements his preferred distribution. Second, KL divergence is strictly

convex in the pair (f, g) if f 6= g and is weakly convex if f = g (Cover and Thomas, Theorem

2.7.2). For a given g, it is increasingly costly for the agent to increase the probability

of a particular x, and it is maximally costly to implement a degenerate distribution that

guarantees the realization of a particular x. This convexity implies that the agent’s control

over the distribution will never amount to full control over the realization, because controlling

the realization is too costly. In more applied terms, the agent can reduce, but not eliminate,

the role of exogenous influences on x. Third, the KL divergence marginal cost approaches

infinity as f(x) approaches zero for any x; this will simplify our analysis by guaranteeing

interior solutions. Finally, KL divergence is generally asymmetric (D(f ||g) 6= D(g||f)). This

reflects the idea that the personal cost of taking an action tends to differ from the cost of

undoing an action; for example, the cost of launching a product and discontinuing a product

need not be the same.

In the classic parametric model, the principal and agent have a conflict over the agent’s

effort level, a; the agent prefers minimum effort (e.g. a = 0), while the principal wants the

agent to work as much as possible. Under the generalized approach, the principal and agent

have a conflict of interest over what distribution should be implemented, f . The principal

wants an f with the highest possible E[B(x)], and because she is risk neutral, she does

not care intrinsically about the distribution’s shape. The agent prefers to set f = g, and

must be provided with incentives to do anything else. The distribution g is undesirable from

the principal’s perspective but is maximally desirable from the agent’s perspective, absent

contractual incentives.

The distribution g warrants further discussion. This exogenously specified distribution

is the distribution that the agent would implement if offered a flat wage; that is, it is

the distribution that arises when the agent does exactly what he wants, absent contractual

incentives. We are agnostic about these preferences. For an extremely effort-averse CEO, g

might be the distribution arising when the agent spends all his time watching Netflix instead

of working. For a CEO seeking the “quiet life,” g might be the distribution that keeps

such as a CEO using derivatives to transfer cash flows across states at no personal cost (but

it does not rule out cases where the CEO has to exert effort to find the right combination

of derivatives to perfectly hedge against risk).
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the company humming along modestly, such that the CEO does not have to work too hard

but his reputation is not destroyed. For a CEO who likes empire building, g might be a

distribution that rapidly grows the company at the expense of long-term value.

Notice that because g is by definition the agent’s cost-minimizing distribution, any

divergence from g is costly, including in the downward direction. Hence, the agent incurs

disutility by actively working to destroy output, beyond any output destruction inherent

in g. There could be settings in which costly downward divergences are descriptive. For

example, g may represent the distribution wherein the CEO works just hard enough that

his reputation is not damaged; here, a downward divergence from g is personally costly not

because it takes “effort,” but because abnormally poor performance hurts the CEO’s future

career prospects. Regardless of whether costly downward divergences are descriptive, they

are never incentivized in equilibrium and hence have no impact on our results.

With all of our modeling assumptions in place, we turn to the agent’s problem. When

offered contract s, the agent chooses f to maximize his expected utility from compensation

less his personal cost.

max
f

∫
U(s(x))f(x)dx−

∫
f(x) ln

(
f(x)
g(x)

)
dx

s.t. 1 =
∫
f(x)dx

f(x) ≥ 0 for all x

(10)

The constraints ensure that the chosen f is a p.d.f. Let ν denote the Lagrange multiplier

on the constraint 1 =
∫
f(x)dx. We ignore the final set of constraints because, as we will

establish shortly, f(x) ≥ 0 does not bind for any x. Pointwise optimization of (10) yields

the following incentive compatible action.

f(x) = g(x)eU(s(x))−ν−1, (11)

where ν = ln
(∫

g(x)eU(s(x))−1dx
)

is obtained by substituting (11) into the constraint 1 =∫
f(x)dx. Because both g and the exponential function are non-negative everywhere, the

unconstrained solution satisfies the constraint f(x) ≥ 0 for all x. It follows that when faced

with a particular incentive scheme s, the agent chooses f such that (11) is maintained for

all x. Taking into account that the agent will respond in this way, the principal solves the
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following program.

max
s,f

∫
(B(x)− s(x))f(x)dx

s.t. ν +
∫

(U(s(x))− ν)f(x)dx−V (f) ≥ Ū

U(s(x)) = ln
(
f(x)
g(x)

)
+ 1 + ν for all x

1 =
∫
f(x)dx

(12)

The principal seeks to maximize her expected net payoff subject to three constraints.

The first is the IR constraint, where we have added and subtracted ν on the left-hand side for

convenience. The second set of constraints are the IC constraints. These are obtained from

the agent’s first-order condition (equation 11); the first-order approach is valid here because

the agent’s program (10) maximizes a concave function with linear constraints. There is

an IC constraint for every x because the agent chooses the probability of every possible

realization of x, and thus equation (11) must be satisfied for all x in order for the proposed

(s, f) to be incentive compatible. The final constraint ensures that the agent chooses a

distribution that integrates to one; we refer to this as the “p.d.f. constraint.”14 Throughout

the paper, we let λ be the Lagrange multiplier on the IR constraint, µ(x) be the IC multiplier

for a given x, and η be the multiplier on the p.d.f. constraint.

Pointwise optimization of (12) with respect to s at x yields

1
U ′(s(x))

= λ+ µ(x) 1
f(x)

. (13)

The term 1/f(x) in equation (13) is the analog to the classic likelihood ratio, fa(x)/f(x), in

equation (5). To see this, notice that because the agent chooses each point in the distribution

f independently, the derivative of f(x) with respect to the agent’s choice of f at the point

x is equal to one, and hence we can compute the likelihood ratio as
d
df
f(x)

f(x)
= 1

f(x)
. There

is an important difference between equations (5) and (13), stemming from the agent’s rich

action space: in equation (5), there is a single IC multiplier, µ, while in equation (13) there

is a µ(x) at each point x. The following proposition shows that when we solve for µ(x),

the term µ(x) 1
f(x)

in equation (13) is replaced by the principal’s net objective, B(x)− s(x).

14Equivalently, we could write this constraint as ν = ln
(∫

g(x)eU(s(x))−1dx
)

to ensure

that ν is specified such that f(x) integrates to one in the agent’s program. To see the

equivalence, notice that substituting the IC contract U(s(x)) = ln
(
f(x)
g(x)

)
+ ν + 1 into

ν = ln
(∫

g(x)eU(s(x))−1dx
)

reduces to 1 =
∫
f(x)dx.

19



Bonham & Riggs-Cragun Aggregated Estimates November 9, 2022

Hence, in stark contrast to the classic parametric approach, likelihood ratios play no role in

the solution.

Proposition 1 The contract solving program 12 is characterized as follows.

1
U ′(s(x))

= λ− η +B(x)− s(x). (14)

The vector x enters (14) only through the contract, s(x), and the objective, B(x). All

variation in the contract comes through variation in the objective B(x). This has important

implications for optimal aggregation. Rearranging (14) gives

s(x) = Ũ−1 (B(x)) , (15)

where Ũ(s) ≡ s+ 1
U ′(s)
−λ+ η. As in Banker and Datar [1989], we can separate the solution

into two stages, where the elements of x are first aggregated into a composite measure and

then a compensation contract is written on that composite measure.

Aggregator: π(x) = B(x)

Contract: s(π(x)) = Ũ−1 (π(x))
(16)

Thus, the principal’s objective, B(x), is an optimal aggregator for contracting.

The reason for this result stems from the agent’s rich action space. Notice that in the

classic approach (section 3.1), the agent chooses a scalar, a ∈ R, whereas the principal

chooses a vector-valued function, s(x). Because the agent’s options are so limited relative to

the principal’s, there are infinitely many contracts that can implement a particular action

a, and the principal has the advantage of choosing among these to maximize risk-sharing

efficiency. The generalized approach puts the principal and agent on equal footing: the agent

chooses f(x) at every x and the principal chooses s(x) at every x.

With this balance of control, any change in the contract s causes the agent to change

his choice of f . Hence, the optimal contract (14) is unique up to addition by a constant:

there is only one contract that will implement a particular action while rewarding the agent

his reservation utility. The principal wants the largest possible mean-shift in B(x), and the

one-to-one mapping between the contract and the distribution implies that any attempt by

the principal to weight the elements of x by some scheme δ(x) rather than B(x) would result

in the agent changing his choice of f(x) to improve δ(x) rather than B(x) (akin to the agent

“misallocating effort” among the components that the principal cares about).
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Banker and Datar [1989] provided a rationale for linear aggregation by showing that

under the classic approach, optimal aggregators can be linear if likelihood ratios are linear.

By contrast, the optimal aggregator in our setting is linear if the principal’s objective B(x)

is linear. The optimal weights in the linear aggregator are determined entirely by the linear

weights in B(x), as shown in the following corollary.

Corollary 1 Assume the principal values x linearly so that her objective is B(x) = bTx =
m∑
i=1

bixi, where b ≡ (b1 . . . bm)T . Then an optimal linear aggregator and contract solving the

principal’s program are as follows.

Aggregator: π(x) ≡
m∑
i=1

πixi =
m∑
i=1

bixi

Contract: s(π(x)) = Ũ−1 (π(x)) ,
(17)

where Ũ(s) ≡ s + 1
U ′(s)

− λ + η characterizes the contract’s functional form. In particular,

if B(x) is a linear aggregate, then the contract is conditioned on that same linear aggregate,

with the optimal weight on xi given by bi.

The corollary shows that under the generalized distribution approach, the optimal linear

aggregator simply sets πi = bi for each xi. That is, performance measures are weighted

according to their weights in the principal’s objective. Sensitivity and precision (however

defined in this setting) play no role in the aggregation process; the only thing that matters

for optimal weighting is the vector b.

Corollary 1 can help rationalize the use of equally-weighted aggregates in compensation

contracts. As an example, assume that x = (x1, x2)T , where x1 is income from Product 1 and

x2 is income from Product 2. Assume that the principal values income from these products

equally such that her objective can be written B(x1, x2) = x1 + x2. Assume further that

income from one of the products is noisier that the other because, for example, its demand

is more elastic. Then the classic sensitivity-precision result from Banker and Datar [1989]

would predict a lower contractual weight on the noisier product (all else equal), and that it

would therefore be inefficient to contract on total income, xt ≡ x1 +x2. Under our approach,

by contrast, the optimal contractual aggregator follows from (17) as

π(x1, x2) = B(x1, x2) = x1 + x2 = xt. (18)

That is, contracting on total income is perfectly efficient, despite the differing degrees of

noisiness of the underlying products.
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4 Full model: Contracting on aggregated estimates

In the prior section, we assumed that x was observable; this allowed us to make straight-

forward comparisons to Banker and Datar [1989], who also assume that x is observable.

But if the things firm owners value were observable, there would be no need for accounting

measurement. In the language suggested by Ijiri [1967], accounting numbers are surrogates

(things that represent other things or phenomena) that represent certain economic principals

(things or phenomena represented by surrogates). We now extend the model to a setting

where the things firm owners care about are unobservable, which will allow us to jointly

study measurement and aggregation.

Assume as before that the principal cares about m constructs, x ≡ (x1, . . . , xm)T , and

assume that she values these constructs linearly such that her objective is B(x) =
∑m

i=1 bixi.

Now assume that the principal cannot contract on x; this is in line with the idea from

accounting thought that notions such as “income” are abstract constructs that cannot be

directly observed (Ijiri [1975]). Instead, the principal can observe n contractible random

variables given by y ≡ (y1, . . . , yn)T . Importantly, y must be verifiable in order to form the

basis of a legally enforceable contract. We interpret y as the entire set of verifiable events and

transaction characteristics relevant to the contracting period. This includes all exchanges

with other parties—the inflowing and outflowing “facts of services rendered” described by

Paton and Littleton [1940]—and accompanying data such as inventory delivery times or

customer credit scores.

Let the agent choose f(x,y) ∈ ∆(x,y), where ∆(x,y) is the space of all joint probability

distributions over x and y. We define the cost of implementing f(x,y) by its divergence

from an exogenous reference distribution, g(x,y) ∈ ∆(x,y):

V (f) = D(f(x,y)||g(x,y)) ≡
∫
f(x,y) ln

(
f(x,y)
g(x,y)

)
d(x,y), (19)

where
∫
d(x,y) indicates integration over x1, . . . , xm, y1, . . . , yn. As before, g(x,y) minimizes

V (f) and is therefore the distribution preferred by the agent absent incentives. The cost-

minimizing distribution g(x,y) captures “natural relationships” between fundamentals x and

observables y. For example, a natural relationship between the number of sales transactions

(observable, in y) and the increase in net economic assets (unobservable, in x) would be

captured by these variables being correlated in g(x,y), indicating that it is costly for the

agent to increase sales without also increasing net economic assets.

Given a contract s(y), the agent chooses f(x,y) to maximize his expected utility from

22



Bonham & Riggs-Cragun Aggregated Estimates November 9, 2022

compensation minus his personal cost.

max
f

∫
U(s(y))f(x,y)d(x,y)−

∫
ln
(
f(x,y)
g(x,y)

)
f(x,y)d(x,y)

s.t. 1 =
∫
f(x,y)d(x,y)

(20)

Letting ν be the Lagrange multiplier on the constraint, pointwise optimization yields the

following characterization of the incentive compatible action.

f(x,y) = g(x,y)eU(s(y))−1−ν (21)

Because x is not contractible, the agent has more control in choosing a distribution than

the principal has in designing the contract. The agent chooses the probability of every (x,y)

while the principal chooses a payment s(y) for every outcome y. The principal is faced with

the following optimization problem.

max
s,f

∫
(B(x)− s(y))f(x,y)d(x,y)

s.t. ν +
∫

(U(s(y))− ν) f(x,y)d(x,y)−
∫

ln
(
f(x,y)
g(x,y)

)
f(x,y)d(x,y) ≥ Ū

U(s(y)) = ln
(
f(x,y)
g(x,y)

)
+ 1 + ν for all (x,y)

1 =
∫
f(x,y)d(x,y)

(22)

Due to the principal’s control disadvantage, there are some distributions that she cannot

implement with any contract. Pointwise optimization of program (22) over s is done point-

wise at every y (rather than at every (x,y)), which leaves integrals over x in the solution.

In particular, the optimal contract depends on conditional expectations over x given y. This

is shown in the following proposition, which presents the solution to program (22).

Proposition 2 If the agent chooses f(x,y) nonparametrically, where the principal’s objec-

tive is B(x) =
m∑
i=1

bixi but she can only contract on y, the optimal contract is characterized

as follows.

1
U ′(s(y))

= λ− η +
∫
B(x)f(x |y)dx−s(y)

⇐⇒ s(y) = Ũ−1 (Ef [B(x)|y]) ,
(23)

where Ef [B(x)|y] ≡
∫
B(x)f(x |y)dx is the expected value of B(x) given y under the equi-

librium distribution f , and Ũ(s) ≡ s + 1
U ′(s)
− λ + η characterizes the contract’s functional

form.
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The proposition shows that the optimal contract is a transformation of Ef [B(x)|y],

the expected value of the principal’s objective given all available information in y. Then

contracting on Ef [B(x)|y] is just as efficient as contracting on all of the data y; in other

words, Ef [B(x)|y] is an efficient aggregator of the information y.

Closer examination reveals that this aggregator can be separated very naturally into two

functional components. Because we have assumed B(x) to be linear, Ef [B(x)|y] is a linear

sum of conditional expectations:

Ef [B(x)|y] = Ef
[
m∑
i=1

bixi

∣∣∣∣y] =
m∑
i=1

bi Ef [xi|y], (24)

where Ef [xi|y] ≡
∫
xif(xi|y)dxi is the expected value of xi given all available information

in y; that is, it is an estimate of xi given the data y. Equation (24) reveals that one very

natural way to construct the optimal aggregate Ef [B(x)|y] is to first estimate each element

in x and then aggregate the estimates by the linear weights b. This idea is formalized

in the following corollary, where we separate the principal’s solution into three functional

components: estimation, aggregation, and compensation. We let x̂i denote the principal’s

estimate of xi and x̂ her estimate of the vector x.

Corollary 2 If the agent chooses the distribution f(x,y) where the principal’s objective is

B(x) =
∑m

i=1 bixi and y is the set of contractible performance measures, then an optimal

estimate, aggregator, and compensation contract are as follows.

Estimates: x̂ = Ef [x |y]

Aggregator: π(x̂) = B(x̂) ≡ bT x̂

Contract: s(π(x̂)) = Ũ−1 (π(x̂)) ,

(25)

where Ef [x |y] ≡
∫

x f(x |y)dx is the expected value of x given y under the equilibrium

distribution f and Ũ(s) ≡ 1
U ′(s)

+ s− λ+ η characterizes the agent’s compensation function.

The solution is executed in three stages. In the measurement stage, the principal esti-

mates each xj as x̂j = Ef [xj|y]. Notice that x̂j is an unbiased estimate:

Ef [x̂j] = Ef [Ef [xj|y]] = Ef [xj], (26)

or in the words of accounting standard setters, it is a “faithful representation of the real-world

economic phenomena that it purports to represent” (FASB [2006]). In the aggregation stage,

the principal linearly aggregates the estimates x̂ according to the weights in her objective to
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produce the aggregated estimate π(x̂) = bT x̂ =
m∑
i=1

bix̂i. Finally, in the compensation stage,

the principal conditions the agent’s compensation on the aggregated estimate.

Our decomposition mirrors how accounting is done in practice. Standard setters de-

fine unobservable constructs such as revenues and expenses and dictate rules for how those

constructs are to be measured. This process is generally highly non-linear and contains

many contingencies, such as criteria for revenue recognition. The resulting metrics are then

aggregated in a process that is strictly linear: under double-entry conventions, individual

transactions and accounts are aggregated with weights of 1 or −1 to form aggregated metrics.

Executives are then compensated on one or more of these aggregated metrics. Our results

indicate that contracting on a given single accounting aggregate in practice is efficient if

1) the component accounting proxies are representationally faithful (i.e. x̂ is an unbiased

estimate of x) and 2) the principal values the underlying constructs x with weights of 1 or

−1, just as those elements are aggregated in conventional accounting.

To illustrate, assume that the principal cares equally about the unobservable constructs

of FASB-defined revenues, xr, and FASB-defined expenses, xe, such that her objective is

B(xr, xe) = xr−xe ≡ z, where z denotes true (unobservable) earnings. The principal cannot

observe xr, xe or z directly, but she does observe y, which contains information such as sales

transactions, customer characteristics, inventory data, and operational expenditures. One

option is that the principal could write a highly complex contract conditioned on all of the

underlying data in y (indeed, compensation committees have access to enormous databases

of detailed information). Corollary 2 provides a different option. The principal first uses

information in y to construct unbiased estimates of revenues and expenses, x̂r and x̂e:

Estimate of xr x̂r = Ef [xr|y]

Estimate of xe x̂e = Ef [xe|y].
(27)

Next, the principal aggregates these estimates according to the weights in her objective.

Because we have assumed that B(xr, xe) is the equally weighted difference between revenues

and expenses, the principal can efficiently condition the agent’s compensation on net income,

ẑ ≡ x̂r − x̂e.

Aggregator: π(x̂r, x̂e) = B(x̂r, x̂e) = x̂r − x̂e ≡ ẑ

Contract: s(π(x̂r, x̂e)) = s(ẑ) = Ũ−1 (ẑ) .
(28)

This example illustrates that contracting solely on net income in practice is efficient
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to the extent that 1) the constructs of revenues and expenses are defined by changes in

shareholder wealth and 2) measured revenues and expenses (x̂r and x̂e) faithfully represent

the FASB-defined constructs they purport to represent (xr and xe). Under these conditions,

contracting solely on measured net income is just as efficient as writing an extremely complex

contract conditioned on all of the underlying information used to construct net income.

Our results can also provide a rationale for contracting on multiple accounting metrics.

One commonly observed practice in executive compensation is to condition CEO pay on

both revenue and income metrics (De Angelis and Grinstein [2015], Bloomfield, Gipper,

Kepler, and Tsui [2021]). Extending the example above, suppose that the principal puts a

higher valuation weight on revenues than expenses because, for example, the FASB-defined

construct of revenues does not fully capture changes in shareholder wealth. Specifically,

assume that the principal’s objective is given by B(xr, xe) = brxr − xe, with br > 1. In

this case, contracting solely on measured net income (ẑ ≡ x̂r − x̂e) is not efficient. Instead,

the optimal contract can be conditioned on a weighted aggregate of estimated revenues and

expenses,

π(x̂r, x̂e) = brx̂r − x̂e, (29)

or equivalently, on revenues and net income:

π(x̂r, ẑ) = (br − 1)x̂r + ẑ, (30)

where br − 1 > 0. Contracts that put positive incentives on revenues and earnings are in

effect weighting revenues more heavily than expenses, and our results suggest this is done to

align the contractual weights with the principal’s objective.

5 Optimal measurement rules

Corollary 2 shows that the optimal contract is conditioned on the unbiased estimates x̂ =

Ef [x|y]. As in Gao [2013], there is a two-step mapping from the fundamentals x to the

performance measures x̂. First, as part of the agent’s choice of f(x,y), the unobservable

fundamentals x map to the transaction characteristics y according to the conditional dis-

tribution f(y|x). Then, as part of the principal’s solution, the transaction characteristics y

are used to form the estimates x̂. We will use the term measurement to refer to the second

part of this two step mapping, where the principal writes measurement rules on observable
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transaction characteristics. We will refer to optimal measurement rules as functions of y that

produce unbiased estimates of x. Notice that under the general model in the prior section,

the measurement process is ambiguous; without knowing the form of the distribution f , we

cannot say very much about how the principal forms the expectation Ef [x|y]. In this section,

we employ a specification of our model in which the optimal f(x,y) arising in equilibrium is

a multivariate normal distribution. This gives us the tractability to open the measurement

black box.

As in section 4, assume that the principal’s objective is B(x) = bTx, that y is con-

tractible but x is not, and that the agent controls f(x,y) at a personal cost given by (19).

Assume that the agent’s cost-minimizing distribution, g(x,y), is a multivariate normal dis-

tribution with mean 0 and variance-covariance matrix Σg ≡
[

Σxx Σxy

Σyx Σyy

]
. Finally, assume that

the agent’s reservation utility is Ū = 0, and assume that he is risk neutral so that U(s) = s.

The assumption of risk neutrality does not make the agency problem trivial; when the prin-

cipal cannot contract on the outcomes she values (here, x), she cannot achieve first-best

by selling the firm to a risk-neutral agent (Baker [1992]). We are giving up risk aversion

for tractability, and we feel this is a worthy sacrifice given that this section is focused on

measurement rather than the shape of the compensation function. The following proposition

provides the optimal contract and shows that the agent’s equilibrium action mean-shifts the

distribution g.

Proposition 3 Assume that the principal’s objective is B(x) = bTx, but the only measure

available for contracting is y. Let the risk-neutral agent choose f(x,y), and assume that his

preferred distribution g(x,y) is a centered multivariate normal distribution with covariance

matrix Σg ≡
[

Σxx Σxy

Σyx Σyy

]
. Then an optimal estimate, aggregator, contract, and action are

characterized as follows.

Estimate: x̂ = ΣxyΣ−1
yyy

Aggregator: π(x̂) = B(x̂) = bT x̂

Contract: s(π(x̂)) = π(x̂)− η
Action: f(x,y) = g(x,y)eb

TΣxyΣ−1
yyy−η,

(31)

where η = 1
2
bTΣxyΣ−1

yyΣyxb. Under the equilibrium distribution, (x,y) ∼ N ([ µxµy ] ,Σg),

where µx = ΣxyΣ−1
yyΣyxb and µy = Σyxb. Moreover, the equilibrium cost V (f) is increasing

quadratically in the mean shift from g to f .

The solution (31) is presented using a three-stage decomposition, as in Corollary 2,
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where the principal first constructs the estimates x̂1 . . . x̂m, aggregates them according to the

weights in her objective, and then conditions the agent’s compensation on the aggregated

estimate. The three-step solution is equivalent to contracting directly on y, where s(y) =

bTΣxyΣ−1
yyy.

The matrices Σxy and Σ−1
y y in the unbiased estimator are analogous to the classic notions

of sensitivity and precision, where we can interpret Σ−1
y y as the precision of the measures y

and Σxy as the sensitivity of the measures y to changes in the constructs x. Hence, the term

ΣxyΣ−1
y y can be interpreted as the “signal-to-noise” ratios of the measures y with respect to

the constructs x. This is distinct from Banker and Datar [1989], where the signal-to-noise

ratio ∂E(xi|a)/∂a
Var(xi)

is defined for the variable xi with respect to the agent’s action. Notice from

equation (31) that sensitivity Σxy and precision Σ−1
y y enter the solution only through forming

the estimates x̂. Crucially, when x is observable (i.e. x̂ = x), sensitivity and precision play

no role in the solution (see also Corollary 1). This stands in stark contrast to Banker and

Datar [1989], where x is assumed to be observable and the principal aggregates the elements

of x according to their precision and sensitivity to the agent’s action (as we reviewed in

section 3.1).

Equation (31) shows that our specification in this section changes the general solution

(25) in three ways. First, measurement is no longer ambiguous; the principal’s unbiased

estimate is given by the linear regression x̂ = Ef [x|y] = ΣxyΣ−1
yyy.15 Second, the optimal

contract is now linear in the estimates x̂. This linearity comes from assuming risk neutrality.

While risk neutrality produces weakly optimal linear contracts under the classic approach,

here it results in uniquely optimal linear contracts. Finally, the tractable specification pro-

duces a closed-form solution for the equilibrium f . The proposition shows that if g is a

multivariate normal with mean 0 and variance-covariance Σg, then the equilibrium f is also

a multivariate normal with different means from g but the same variance-covariance matrix.

It is worth emphasizing that we have not restricted f to be normal; as in our general

model, the agent has the ability to implement any distribution imaginable. The reason a

normal distribution arises in equilibrium has to do with the KL-divergence cost function, in

combination with the assumption of risk neutrality. The risk-neutral principal does not care

15The measurement process will always have x̂ = ΣxyΣ−1
yyy when g is a multivariate normal,

even if the agent is not risk neutral. This is because f(x|y) = g(x|y) always holds when x

is not contractible (see Bonham and Riggs-Cragun [2021], Lemma 3), so f(x|y) is a normal

distribution even if f(x,y) is not. Thus, Ef [x|y] is a linear regression of x on y for any

risk preference, and risk neutrality is needed only for normality in f(x,y) = f(x|y)f(y).
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about the shape of the distribution and wants to increase its mean as cheaply as possible. It

can be shown that for a given mean shift from g to f where g is a normal distribution with

variance-covariance matrix Σg, the f that minimizes KL divergence is a normal distribution

with variance-covariance matrix Σg. Combining this with a risk-neutral agent means that

making f a normal distribution is the cheapest way to implement a given mean shift.

Interestingly, our solution has several properties that are similar to the assumptions

made in the LEN model (e.g. Feltham and Xie [1994]). LEN models exogenously restrict

contracts to be linear; our solution has uniquely optimal linear contracts. In LEN, the agent

is modeled as choosing the mean of a normal distribution; for example, the agent chooses a

in f ∼ N (a, σ2). In our solution, the agent shifts the mean of a normal distribution. LEN

models often assume that the agent’s personal cost is quadratic in the mean shift a; our

Proposition 3 shows that the agent’s equilibrium cost is quadratic in the implemented mean

shift. The LEN assumptions are made for tractability, and our specification produces many

of the same tractable features.

One notable difference between our specification and LEN is that we assume risk neu-

trality while the LEN agent has negative exponential utility. Therefore, the specification we

use in this section is not equipped for studying risk-sharing issues. The LEN model sacrifices

optimal contracts to gain tractability in complex settings, and we give up risk considerations

to study optimal measurement as well as the effects of measurement on production. How-

ever, optimal measurement in our setting does not depend on the agent being risk neutral;

we show in Appendix B that our main measurement insights are robust risk aversion.

What the risk neutrality assumption buys us, in conjunction with the assumption that

g(x,y) is a multivariate normal, is that f(x,y) is multivariate normal in equilibrium. The

normality of f(x,y) conveniently allows for comparative statics on how the covariance struc-

ture Σg affects production. As a simple example, consider the case with m = n = 1; that is,

the principal cares about a single construct (e.g. income) and only one transaction charac-

teristic is contractible. Specifically, assume B(x) = x and y = y, where the agent chooses

f(x, y). Assume g(x, y) is a centered bivariate normal distribution with correlation coeffi-

cient ρ > 0, so that Σg =
[

1 ρ
ρ 1

]
. Then the optimal estimate, contract and distribution are

as follows.

Estimate: x̂ = ρy

Contract: s(x̂) = x̂− 1
2
ρ2

Action: f(x, y) ∼ N
([

ρ2
ρ

]
,Σg

) (32)
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In equilibrium, µx = ρ2 and µy = ρ. Notice that ρ2 < ρ for 0 < ρ < 1, so in equilibrium

the agent mean-shifts y more than x. The parameter ρ indexes the complementarity between

x and y in the agent’s preferred distribution g. When ρ is small, it is easy for the agent to

improve y without improving x. When ρ is high, the agent finds it costly to move y without

also moving x. When ρ = 1, x and y are perfect complements in the agent’s preferred

distribution, and he prefers to move x and y in exactly the same way. In this case, the

principal does just as well contracting on y as she would do if she could contract on x

directly. We might also interpret ρ as an index of the congruity between x and y, where

x and y are perfectly congruous when ρ = 1 and totally incongruous when ρ = 0. As in

Feltham and Xie [1994],16 first best allocations are attainable with a risk neutral agent only

when y is perfectly congruent.

We will explore the m = n = 1 case further in section 5.1, which is the first of two

accounting measurement applications that we provide. Application 5.1 studies how optimal

measurement is affected by the agent’s ability to manage earnings, and application 5.2 stud-

ies optimal measurement of uncertain investments. Although these applications are highly

stylized, they do suggest that many common accounting practices are efficient for contracting

when managers have extensive control over both fundamental performance and observable

data.

5.1 Window dressing and conservatism

In many settings, managers can engage in window dressing actions – non-value-added activ-

ities that improve a performance measure but do not improve the principal’s objective. Our

model is well suited for studying this issue. Let the principal’s objective be true performance,

denoted x, and assume that x is not contractible. Let y be contractible evidence about the

realization of x, such as a transaction characteristic as in Gao [2013]. The agent controls

f(x, y), and thus can potentially engage in window dressing by improving the observable

transaction characteristic y but not the unobservable true performance x. The principal

must design a measurement rule x̂(y) and contract s(x̂) to optimize her net payoff in the

face of the agent’s ability to game y.

16In Feltham and Xie [1994], the principal’s objective x and the performance measure y are

both linear in a vector of the agent’s efforts along different dimensions, plus some normally-

distributed noise: x = bTa + εx and y = qTa + εy. In their setting, congruity refers to

proportionality between the vectors b and q; a perfectly congruous performance measure

y weights the dimensions of effort the same way that the principal’s objective does.
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Assume that the agent’s preferred distribution, g(x, y), is a bivariate normal with mean

0 and variance-covariance matrix Σg =
[

1 ρ
ρ 1

]
, where ρ > 0. If ρ is close to one, the agent

finds it very costly to increase y without also increasing x; that is, window dressing behavior

is difficult and the transaction characteristic y provides very reliable evidence about x. By

contrast, if ρ is close to zero, the agent finds it very easy to increase y without changing x; that

is, window dressing behavior is very easy and the transaction characteristic provides little

reliable evidence about true performance. Define window dressing as the extent to which

the expected transaction characteristic exceeds expected true performance, Ef [y]− Ef [x].

The solution to the principal’s program is given by equation (32). Examining the equilib-

rium distribution reveals that the amount of window dressing that takes place in equilibrium

is µx − µy = ρ− ρ2. This function is concave with a global maximum at ρ = 1
2

and is equal

to zero at ρ = 0 or ρ = 1. Thus, for any interior level of susceptibility to window dressing

(i.e. ρ ∈ (0, 1)), there will be some amount of window dressing activity in equilibrium.

The principal is not fooled by the agent’s window dressing activity, and she takes it into

account when forming her estimate. By (32), the optimal measurement rule sets x̂ = ρy,

which implies that Ef [x̂] = ρEf [y] = ρ2 = Ef [x]. That is, the optimal measurement rule

discounts y by factor ρ ∈ [0, 1] in order to reduce Ef [x̂] from Ef [y] to Ef [x]. As a result, the

optimal estimate x̂ understates the manipulable evidence y but is an unbiased measure of the

true value of x. Analogous to Gao [2013] and as suggested by Watts [2003], the conservative

measurement rule offsets managerial biases to create an unbiased performance measure.

5.2 Accounting for investments

Let the principal’s objective be Hicksian income (the change in net economic assets dur-

ing the period), defined as B(x) = b2x2 − x1, where x1 represents current outlays in an

investment and b2x2 represents future benefits from the investment, where b2 > 1 so that

the investment is expected to have positive NPV. Let y1 and y2 represent evidence about

x1 and x2, respectively. The agent chooses the joint distribution f(x1, x2, y1, y2). Let the

agent’s cost-minimizing distribution, g(x1, x2, y1, y2), be a centered multivariate normal with

variance-covariance matrix

Σg =

[
Σxx Σxy

Σyx Σyy

]
=


1 ρx1x2 ρx1y1 ρx1y2

ρx1x2 1 ρx2y1 ρx2y2

ρx1y1 ρx2y1 1 ρy1y2

ρx1y2 ρx2y2 ρy1y2 1

 . (33)
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We assume that current investment outlays are perfectly measurable by setting ρx1y1 = 1.

This assumption implies that ρx1z = ρy1z for any measure z, and consequently, we have

ρx2y1 = ρx1x2 ≡ ρx and ρx1y2 = ρy1y2 ≡ ρy. Let ρ2 ≡ ρx2y2 . Then (33) can be rewritten as

Σg =

[
Σxx Σxy

Σyx Σyy

]
=


1 ρx 1 ρy

ρx 1 ρx ρ2

1 ρx 1 ρy

ρy ρ2 ρy 1

 . (34)

From Proposition 3, the solution is as follows.

Estimate of x1: x̂1 = y1

Estimate of x2: x̂2 =
(
ρx−ρyρ2

1−ρ2y

)
y1 +

(
ρ2−ρxρy

1−ρ2y

)
y2

Aggregator : π(x̂) = B(x̂) = b2x̂2 − x̂1

Contract : s(π(x̂)) = π(x̂)− η

Action: f(x1, x2, y1, y2) ∼ N



µx1 = ρxb2−1

µx2 =
b2(ρ

2
x+ρ

2
2−2ρxρyρ2)−ρx(1−ρ

2
y)

1−ρ2y
µy1 = ρxb2−1

µy2 = ρ2b2−ρy

 ,Σg


(35)

To gain intuition for this solution, we will do comparative statics under two cases, one

in which reliable evidence about x2 is very difficult to produce (ρ2 = 0) and one where it is

very easy to produce (ρ2 = 1).

Case 1: Future returns difficult to measure

We first consider the case in which it is very difficult to produce reliable evidence about

future returns on investment. We capture this setting by assuming that, absent incentives,

y2 is pure white noise: ρx1y2 = ρx2y2 = ρy1y2 = 0. With this assumption, the variance-

covariance matrix under the agent’s cost-minimizing distribution g is given as follows, where
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ρx ≡ ρx1x2 = ρx2y1 .

Σg =

[
Σxx Σxy

Σyx Σyy

]
=


1 ρx 1 0

ρx 1 ρx 0

1 ρx 1 0

0 0 0 1

 . (36)

Under these assumptions, the solution (35) reduces to the following.

Estimate of x1: x̂1 = y1

Estimate of x2: x̂2 = ρxy1 = ρxx̂1

Aggregator : π(x̂) = b2x̂2 − x̂1 = (b2ρx − 1)x̂1

Contract : s(π(x̂)) = π(x̂)− η

Action: f(x1, x2, y1, y2) ∼ N

([ µx1 = b2ρx−1

µx2 = ρx(b2ρx−1)

µy1 = b2ρx−1
µy2 = 0

]
,Σg

) (37)

Both x̂1 and x̂2 are unbiased measures of x1 and x2 given the equilibrium action: Ef [x̂1] =

Ef [y1] = b2ρx − 1 = µx1 = Ef [x1] and Ef [x̂2] = ρx Ef [y1] = µx2 = Ef [x2]. Interpret

the aggregation function π(x̂) = (b2ρx − 1)x̂1 as reported net income pertaining to the

investment, and note that this is increasing in ρx for all positive investments. Thus, the

optimal measurement rule depends on the natural correlation between current investment

and future returns.

If ρx = 0 so that investments are maximally uninformative about future returns, then

net income is given by the cash outlay: π(x̂) = −x̂1 = −y1. That is, investment spending

is immediately expensed and no future benefits are estimated. This is loosely analogous to

the treatment of R&D or advertising expenditures, which generally have a fuzzy mapping

to future returns and are immediately expensed under U.S. GAAP. Given that net income

is constructed in this way when ρx = 0, the agent chooses a distribution in which µx2 = 0

and µx1 = −1; that is, the agent ignores future returns and liquidates some existing projects

(i.e., cuts R&D) to make a short-term profit. Notice that if net income were to fully accrue

the unrealized income and naively ignore ρx = 0 (i.e., if π = (b2 − 1)y1), the manager would

respond by making excessive R&D investments that are unlikely to produce future returns.

Optimal measurement of x2 (x̂2 = ρxy1) discounts y1 by ρx so that the manager does not

game investments to inflate reported income. Hence, although conservative reporting of

future investment income causes the manager to cut R&D, it mitigates overinvestment in
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bad projects whose future returns will never materialize in expectation.

As ρx increases from zero, a smaller proportion of x̂1 is optimally deducted from net

income. When ρx = 1
b2

, net income is equal to π(x̂) = (b2ρx − 1)x̂1 = 0. That is, estimated

investments x̂1 are not reflected on the income statement; in a double-entry system, the

investment is capitalized. We can interpret ρx ∈
(

0, 1
b2

)
as investments that are partly

capitalized and partly expensed. This is loosely analogous to investments in fixed assets,

which indeed are capitalized rather than expensed, with some amount deducted from net

income as depreciation. For fixed asset investments with a relatively high likelihood of return,

i.e. ρx = 1
b2

, the agent chooses a distribution in which µx1 = µx2 = 0; that is, the agent

maintains the status quo investment strategy and refrains from liquidating PP&E.

Finally, as ρx increases beyond 1
b2

, net income optimally includes some unrealized gains

or revenues; in the limit where ρx = 1, net income is given by π(x̂) = (b2 − 1)x̂1. A useful

analogy is the sacrifice of inventory in a credit sale, which tends to be highly correlated with

the future receipt of cash from customers. In that case, x1 is total cost of goods sold, b2 is the

sales price, and b2ρx is the net realizable value of a representative sale. With ρx = 1, it is very

difficult for the manager to make inventory deliveries that are not accompanied by future cash

collections; said differently, delivering inventory and collecting the corresponding payments

are natural complements in the agent’s cost function. If bad debts are immaterial when the

agent does not exert effort, then in equilibrium the agent chooses a distribution in which

µx1 = µx2 = b2 − 1 > 0; that is, the agent exerts effort to sell inventory to customers with

good credit. In this limiting case where ρx = 1, conservatism is unnecessary in the optimal

measurement rule because it is very difficult for the manager to engage in real activities

manipulation. With ρx slightly less than one, we could think of the manager as being able to

game investments on the margins, such as engaging in channel stuffing behavior or delivering

inventory to customers with bad credit. In these situations, the optimal measurement rule

would not fully accrue the future income; for example, it might offset some accrued revenue

with bad debt expense.

These rules show that when future returns are difficult to measure (which we contend

is the typical case), optimal measurement of investments depends on the likelihood that

the investment will pay off. This is consistent with the idea that accruals contain implicit

forecasts or assumptions about the future (Beaver [1991], Leuz [1998], Ordelheide [1988]).

Next we examine optimal measurement when future returns are easy to measure.
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Case 2: Future returns easy to measure

Now we relax the assumption that y2 is pure noise and consider how the solution (35) changes

under the opposite assumption; that is, as evidence about future payoffs becomes perfectly

reliable. Notice that as ρ2 approaches 1, ρx approaches ρy.
17 Then setting ρ2 = 1 and letting

ρ ≡ ρx = ρy, the variance-covariance matrix is as follows.

Σg =

[
Σxx Σxy

Σyx Σyy

]
=


1 ρ 1 ρ

ρ 1 ρ 1

1 ρ 1 ρ

ρ 1 ρ 1

 . (38)

This reduces solution (35) to the following.

Estimate of x1: x̂1 = y1

Estimate of x2: x̂2 = y2

Aggregator : π(x̂) = b2x̂2 − x̂1

Contract : s(π(x̂)) = π(x̂)− η

Action: f(x1, x2, y1, y2) ∼ N

([ µx1 = ρb2−1

µx2 = b2−ρ
µy1 = ρb2−1

µy2 = b2−ρ

]
,Σg

) (39)

Because the agent in this case has no incentive to window dress y1 or y2, the principal

takes both signals as given when estimating x1 and x2; unlike in Case 1, conservatism is

not needed to construct an unbiased estimate of future returns. Recall that the principal’s

objective is B(x) = b2x2 − x1, and suppose that b2 > 1 represents the principal’s discount

factor on the perpetuity x2. The solution above gives that reported income is π(x̂) =

b2x̂2 − x̂1 = b2y2 − y1. Then the change in firm wealth from the investment is reported at

fair value, the present value of expected future cash flows less the amount expended in the

current period.

The results from Case 1 and 2 suggest that optimal measurement rules are driven by the

reliability of available evidence. When evidence about future returns is completely unreliable

(Case 1), optimal measurement is driven by ρx, the correlation between current investments

17For the variance-covariance matrix of the three random variables x2, y1 and y2 to be

positive semi-definite, ρ2ρy −
√

(1− ρ2
2)(1− ρ2

y) ≤ ρx ≤ ρ2ρy +
√

(1− ρ2
2)(1− ρ2

y). Thus,

as ρ2 converges to 1, the lower bound and upper bound on ρx both converge to ρy.
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and future returns; that is, whether income from a particular investment should be accrued

or deferred depends on the likelihood that the investment will pay off in the future. When

evidence about future returns is available, optimal measurement rules take that evidence into

account (see x̂2 in equation 35), and as that evidence becomes perfectly reliable, the optimal

measurement rule is to report fair value, regardless of the correlation between investment

and future returns.

6 Conclusion

We provide a framework for studying the contracting role of accounting. In this framework,

a manager has nonparametric influence over the joint distribution of unobservable funda-

mentals (x) and observable events and transaction characteristics (y). Accounting is the set

of measurement and aggregation rules that estimates x using observable data y and then

aggregates those estimates to produce one or more aggregated estimates.

Some elements of x may be unobservable because they are future events not realized in

the contracting period. Accounting measurement is thus both forward looking and backward

looking : it forecasts future outcomes (x) using past transactions and events (y). This pulls

together ideas from accounting thought that accounting measurement should rely on verifi-

able “backward-looking” information to facilitate legally enforceable contracts and to hold

managers accountable (e.g. Butterworth, Gibbins, and King [1982], Ijiri [1975]) and that

accounting measures contain implicit assumptions about the future (e.g. Ordelheide [1988],

Beaver [1991], Leuz [1998]).

As such, our measurement framework rectifies a long-standing debate in accounting

thought, described by George O. May in 1943:

[T]he present ferment in accounting thought is very largely due to the conflicting
objectives of those who would continue to regard financial statements as reports
of progress or of stewardship, and those who would treat them as being in the
nature of prospectus. (May [1943], p. 21.)

The objectives described by May do not conflict in our model. The optimal measures x̂ are

both contractually optimal, satisfying the stewardship objective (e.g. Watts and Zimmerman

[1986], Ijiri [1975]), and are faithful representations (i.e. unbiased estimates) of the under-

lying economic phenomena x, satisfying what Zeff [2013] termed the “representationalist”

objective (e.g. Moonitz [1961]).
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In our framework, we separate the principal’s solution into three stages: 1) using veri-

fiable data y to estimate x, 2) aggregating the resulting estimates x̂, and 3) compensating

the agent based on the aggregated estimate π(x). This process is descriptive of practice and

provides a rationale for the widespread use of aggregated accounting metrics in executive

compensation contracts. Compensation committees have access to enormous databases of

information (e.g. individual exchange transactions, inventory delivery times, and customer

credit scores), but rather than referencing all of this information, executive compensation

contracts are conditioned on a handful of aggregated accounting metrics. Our results in-

dicate that this practice is optimal to the extent that 1) GAAP constructs are defined as

changes in shareholder wealth (such that shareholders value the GAAP constructs equally)

and 2) GAAP measurement rules produce metrics that faithfully represent the underlying

GAAP constructs.

In section 5, we provide a tractable specification of our framework for studying optimal

accounting measurement. Here too, the results are very descriptive. We find that optimal

measurement is conservative: because managers can game evidence y about unobservable

fundamentals x, the evidence is discounted so that estimated fundamentals x̂ are unbiased.

We also provide a measurement rule for accounting for uncertain investments: the degree

to which unrealized income is recognized should depend on the natural relationship between

current investment and future returns.

The tractable specification that we develop in section 5 has in equilibrium many of the

same features that the LEN model assumes ex ante. Our specification also has the advantage

of producing optimal contracts (rather than linearly restricted ones). Much like how the

LEN model opened the door to studying applied risk-sharing issues in a linear contracting

setting, we hope our framework will facilitate the study of measurement issues in an optimal

contracting setting.
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A Proofs

Proof of Proposition 1. First, write program (12) in Lagrangian form as follows.

L =
∫

(B(x)− s(x))f(x)dx

+λ
[
ν +

∫
(U(s(x))− ν)f(x)dx− V (f)− Ū

]
+
∫
µ(x̃)

[
U(s(x̃))− ln

(
f(x̃)
g(x̃)

)
− 1− ν

]
dx̃

+η
[
1−

∫
f(x)dx

] (40)

Taking the first-order condition with respect to s(x) and rearranging gives

1
U ′(s(x))

= λ+ µ(x) 1
f(x)

. (41)

Now taking the first-order condition with respect to f(x) gives

0 = B(x)− s(x) + λ
[
U(s(x))− ln

(
f(x)
g(x)

)
− 1− ν

]
− µ(x) 1

f(x)
− η (42)

Notice that the IC constraint implies that the term in brackets is equal to zero. Then

rearranging (42) gives µ(x) = f(x) (B(x)− s(x)− η). Substituting this into (41) produces

the solution presented in the proposition.

38



Bonham & Riggs-Cragun Appendix A: Proofs November 9, 2022

Proof of Proposition 2. Rearranging (21) gives U(s(y)) = ln
(
f(x,y)
g(x,y)

)
+ 1 + ν, allowing us to

write the principal’s program as follows.

max
s,f

∫
(B(x)− s(y))f(x,y)d(x,y)

s.t. ν +
∫

(U(s(y))− ν) f(x,y)d(x,y)−
∫

ln
(
f(x,y)
g(x,y)

)
f(x,y)d(x,y) ≥ Ū

U(s(y)) = ln
(
f(x,y)
g(x,y)

)
+ 1 + ν for all (x,y)

1 =
∫
f(x,y)d(x,y)

(43)

Let λ, µ(x,y), and η denote the Lagrange multipliers on the constraints. Pointwise

optimization with respect to s at y yields the following expression for s(y):

∫
f(x,y)dx = λU ′(s(y))

∫
f(x,y)dx +U ′(s(y))

∫
µ(x,y)dx (44)

Noting that
∫
f(x,y)dx = f(y) and rearranging gives the the following characterization of

the optimal contract.

1
U ′(s(y))

= λ+
(∫

µ(x,y)dx
)

1
f(y)

. (45)

Pointwise optimization of (43) with respect to f at (x,y) yields the following closed

form expression for µ(x,y).

µ(x,y) = f(x,y) (B(x)− s(y)− η) (46)

Substituting µ(x,y) into (45) gives:

1
U ′(s(y))

= λ+
(∫

(B(x)− s(y)− η) f(x,y)dx
)

1
f(y)

⇐⇒ 1
U ′(s(y))

= λ− η +
∫
B(x)f(x,y)

f(y)
dx−s(y)

⇐⇒ 1
U ′(s(y))

= λ− η +
∫
B(x)f(x |y)dx−s(y).

(47)
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Proof of Proposition 3. Given a contract s(y), the risk-neutral agent chooses f(x,y) to max-

imize his expected utility minus his personal cost.

max
f

∫
s(y)f(x,y)d(x,y)−

∫
f(x,y) ln(f(x,y)

g(x,y)
)d(x,y)

s.t. 1 =
∫
f(x,y)d(x,y)

(48)

With ν as the multiplier on the constraint, pointwise optimization yields:

f(x,y) = g(x,y)es(y)−ν−1 (49)

The principal’s program is as follows, where we add and subtract ν on the left-hand side of

the IR constraint.

max
s,f,ν

∫
(B(x)− s(y))f(x,y)d(x,y)

s.t. ν +
∫

(s(y)− ν)f(x,y)d(x,y)−
∫
f(x,y) ln(f(x,y)

g(x,y)
)d(x,y) ≥ Ū

f(x,y) = g(x,y)es(y)−ν−1 for all (x,y)

1 =
∫
f(x,y)d(x,y)

(50)

Substitute the IC constraints into the objective function and into the other constraints; this

reduces the IR constraint to ν + 1 ≥ Ū . Setting Ū = 0 and binding the IR constraint yields

ν + 1 = 0. Substituting this into the objective and the other constraints, the principal’s

program can be rewritten as follows.

max
s

∫
(B(x)− s(y))es(y)g(x,y)d(x,y)

s.t. 1 =
∫
es(y)g(x,y)d(x,y)

(51)

Pointwise optimization (at y) characterizes the optimal contract as follows.

es(y)
∫
B(x)g(x,y)dx = (s(y) + 1)es(y)

∫
g(x,y)dx + ηes(y)

∫
g(x,y)dx

⇐⇒ Eg[B(x)|y] = s(y) + 1 + η
(52)

Then we can substitute s(y) = Eg[B(x)|y]−η−1 into equation (49) to obtain the equilibrium

distribution,

f(x,y) = g(x,y)eEg [B(x)|y]−η−1. (53)

By definition of a conditional multivariate normal distribution, Eg[B(x)|y] = bTΣxyΣ−1
yyy.
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Then we can rewrite the optimal contract and action as follows.

s(y) = bTΣxyΣ−1
yyy − η − 1

f(x,y) = g(x,y)eb
TΣxyΣ−1

yyy−η−1
(54)

Now letting x̂ = ΣxyΣ−1
yyy, the solution above is equivalent to the following.

x̂ = ΣxyΣ−1
yyy

π(x̂) = bT x̂

s(π(x̂)) = B(x̂)− η − 1

f(x,y) = g(x,y)eb
TΣxyΣ−1

yyy−η−1

(55)

Let z = [xT ,yT ]T and µ = [µTx , µ
T
y ]T . Conjecture that f(x,y) ∼ N (µ,Σ), where Σ =

Σg ≡
[

Σxx Σxy

Σyx Σyy

]
. Define Σ−1 ≡

[
Σ̃xx Σ̃xy

Σ̃yx Σ̃yy

]
. Then:

f(x,y) = (2π)−
n+m

2 det(Σ)−
1
2 exp(−1

2
(z− µ)TΣ−1(z− µ))

= g(x,y) exp(zTΣ−1µ− 1
2
µTΣ−1µ).

(56)

It follows from (55) and (56) that the conjecture is true if there exists some µ satisfying the

following conditions:

zTΣ−1µ− 1
2
µTΣ−1µ = yTΣ−1

yyΣyxb− η − 1

⇐⇒ xT (Σ̃xxµx + Σ̃xyµy) + yT (Σ̃yxµx + Σ̃yyµy)− 1
2
µTΣ−1µ = yTΣ−1

yyΣyxb− η − 1

Since the coefficients on the variables and the constants must be equal on both sides, the

expression gives the following three equalities.

Σ̃xxµx + Σ̃xyµy = 0,

Σ̃yxµx + Σ̃yyµy = Σ−1
yyΣyxb,

η + 1 = 1
2
µTΣ−1µ.

(57)

The first two expressions imply that Σ−1µ =
[

0
Σ−1

yyΣyxb

]
. Solving for µ:

µ =

[
Σxx Σxy

Σyx Σyy

][
0

Σ−1
yyΣyxb

]
=

[
ΣxyΣ−1

yyΣyxb

Σyxb

]
(58)
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Since Σxx,Σyy are both invertible, we can solve for η + 1 as follows.

η + 1 = 1
2
µTΣ−1µ

= 1
2
µT

[
(Σxx − ΣxyΣ−1

yyΣyx)−1 0

0 (Σyy − ΣyxΣ−1
xxΣxy)−1

][
I −ΣxyΣ−1

yy

−ΣyxΣ−1
xx I

]
µ

= 1
2
µT

[
0

Σ−1
yyΣyxb

]
= 1

2
bTΣxyΣ−1

yyΣyxb

Finally, we show that in equilibrium V (f) is increasing quadratic in µ, the mean shift

from g to f . For two multivariate Gaussians P1 and P2 in Rs,

DKL(P1||P2) = 1
2

(
ln
(

det Σ2

det Σ1

)
− s+ tr(Σ−1

2 Σ1) + (µ1 − µ2)TΣ−1
2 (µ1 − µ2)

)
(59)

Then the KL divergence from g ∼ N (0,Σg) to the equilibrium distribution f ∼ N (µ,Σg) is

computed as

DKL(f ||g) = 1
2
µTΣ−1

g µ. (60)
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B Robustness

In this section, we show that the central insights from our measurement applications hold

when the agent is risk averse. Revert to the assumptions in section 4, wherein the agent’s

utility function U(s) is increasing concave. Our analysis builds on Proposition 2, which gives

1
U ′(s(y))

= λ− η +
∫
B(x)f(x|y)dx− s(y). (61)

Now we show that f(x|y) = g(x|y). First, observe that

f(y) =
∫
f(x,y)dx =

∫
g(x,y)eU(s(y))−1−νdx = g(y)eU(s(y))−1−ν , (62)

where the second equality follows from equation (21) and the first and third equalities are

by definition of a marginal distribution. Equation (62) implies that

f(x|y) = f(x,y)
f(y)

= g(x,y)eU(s(y))−1−ν

g(y)eU(s(y))−1−ν = g(x,y)
g(y)

= g(x|y). (63)

Then
∫
B(x)f(x|y)dx =

∫
B(x)g(x|y)dx ≡ Eg[B(x)|y] and we can rewrite (61) as

1
U ′(s(y))

+ s(y) = Eg[B(x)|y] + λ− η. (64)

Let α(s(y)) ≡ 1
U ′(s(y))

+ s(y). Then s(y) = α−1(Eg[B(x)|y] + λ − η). Substituting this

into the agent’s first-order condition (equation 21) gives the following characterization of the

incentive compatible distribution.

f(x,y) = g(x,y)eU(α−1(Eg [B(x)|y]+λ−η))−1−ν (65)

B.1 Conservatism as a response to window dressing

Let the agent choose f(x, y) and let the principal have objective B(x) = x, where y is

contractible and x is not. The main insight from section 5.1 is that the agent’s ability

to window dress by improving y without improving x results in the principal designing a

measurement rule that discounts the evidence y when estimating x; that is, the estimate

Ef [x̂] is less than the evidence Ef [y]. From Corollary 2, x̂ = Ef [x|y], and thus Ef [x̂] =

Ef [Ef [x|y]] = Ef [x]; that is, x̂ is unbiased. Therefore, to preserve our central insight from

section 5.1, we need to show that Ef [x] < Ef [y] when the agent is risk averse.

Let the agent’s cost-minimizing distribution g(x, y) be a centered bivariate normal dis-
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tribution with variance-covariance matrix Σg =
[

1 ρ
ρ 1

]
. Then by definition of a conditional

bivariate normal distribution, Eg[x|y] ≡ ρy. We can therefore use equation (65) to write

Ef [y] as follows.

Ef (y) =
∫ ∫

yg(x, y)eU(α−1(ρy+λ−η))−1−νdxdy

=
∫
yeU(α−1(ρy+λ−η))−1−νg(y)dy.

(66)

Again using equation (65), we have

Ef (x) =
∫ ∫

xg(x, y)eU(α−1(ρy+λ−η))−1−νdxdy

=
∫
eU(α−1(ρy+λ−η))−1−νg(y)

∫
xg(x|y)dxdy

= ρ
∫
yeU(α−1(ρy+λ−η))−1−νg(y)dy

= ρEf (y).

(67)

Then for ρ ∈ (0, 1), Ef [x] < Ef [y] if Ef (y) =
∫
yeU(α−1(ρy+λ−η))−1−νg(y)dy > 0.

Because t(y) ≡ eU(α−1(ρy+λ−η))−1−ν > 0 and because g(y) is symmetric around zero by

our assumption that g(x, y) is a centered multivariate normal, Ef [y] > 0 if t(y) > t(−y). We

therefore want to show that

eU(α−1(ρy+λ−η)) > eU(α−1(−ρy+λ−η)) (68)

for all y. The function U(·) is increasing in its argument and eU is increasing in U , so

it is sufficient to show that α−1(·) is monotonically increasing in its argument; that is,

(α−1)′(s) > 0. Recall that α(s) = 1
U ′(s)

+ s and assume that the agent has strictly monotonic

utility so that there are no discontinuities in α(s). Then by the inverse function theorem,

(α−1)′(s) = 1
α′(s)

= U ′(s)2

U ′(s)2−U ′′(s) . (69)

By assumption, U ′(·) > 0 and U ′′(·) < 0. Therefore α−1(s) > 0 for all s and Ef [x] =

ρEf [y] ≤ Ef [y] for ρ ∈ [0, 1].

B.2 Accounting for uncertain investments

In section 5.2 we used our tractable framework to study optimal measurement of uncertain

investments. We showed that when information about future returns is perfectly reliable,

fair value accounting is optimal, and when information about future returns is unreliable,

optimal measurement depends on the correlation between current investments and future
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returns. We now show that this measurement insight is preserved when the agent is risk

averse and when g is not restricted to be a normal.

Let x1 be an investment made in the current period and let x2 be the future return

from that investment. Assume that the principal’s objective is B(x) = b2x2 − x1, where

b2 > 1. Let y1 and y2 be contractible evidence about x1 and x2. Assume that y1 is perfectly

reliable such that Eg[x1|y1] = y1. Equation (63) shows that f(x|y) = g(x|y) regardless of

the agent’s utility function or the distributional form of g. Then by Corollary 2, the optimal

measurement and aggregation rules solving the principal’s program are as follows.

Estimate of x1 x̂1 = y1

Estimate of x2 x̂2 = Eg[x2|y1, y2]

Net income π(x̂) = b2x̂2 − x̂1

(70)

Case 1: Future returns difficult to measure

We consider the case where evidence about x2 is unreliable by assuming that y2 is not

informative about x2. Then x̂2 = Eg[x2|y1, y2] = Eg[x2|y1] = Eg[x2|x1]. Then optimal

measurement depends on the relationship between current investment and future returns.

We highlight three subcases.

1. Suppose that there is no relationship between current and future returns: Eg[x2|x1] =

E[x2] = 0. Then x̂2 = 0 and net income is equal to −x̂1. This is akin to immediate

expensing of highly uncertain investments such as R&D.

2. Consider an intermediate case in which Eg[x2|x1] = 1
b2 E[x1|y1]

. Then net income is equal

to zero. Because the investment must go somewhere in a double entry system, we can

interpret this as capitalization of the investment on the balance sheet.

3. Finally, assume that x1 perfectly correlates to x2; for simplicity assume that Eg[x2|x1] =

x1. Then x̂1 = x̂2 and net income is given by x̂1(b2 − 1), akin to accruing revenue and

expensing cost of goods sold for delivery of inventory sold on credit.

Case 2: Future returns easy to measure

Assume now that evidence about x2 is perfectly reliable such that Eg[x2|y1, y2] = y2. Then

net income is given by π(x̂) = b2x̂2− x̂1 = b2y2−y1. That is, the measurement process takes

evidence as given and reports investment income at fair value.
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